SAEMark: Steering Personalized Multilingual LLLM Watermarks
with Sparse Autoencoders

Zhuohao Yu, Xingru Jiang, Weizheng Gu, Chang Gao,
Yidong Wang, Shikun Zhang, Wei Ye'
Peking University
zyu@stu.pku.edu.cn, wye@pku.edu.cn

Abstract

Watermarking LLM-generated text is critical
for content attribution and misinformation pre-
vention. However, existing methods compro-
mise text quality, require white-box model ac-
cess and logit manipulation —limitations that
exclude API-based models and multilingual /
domain-specific use cases. We propose SAE-
MARK, a user-specific watermarking method
that embeds personalized signatures without
altering logits. SAEMARK utilizes Sparse Au-
toencoder (SAE) to extract semantic features
of generated texts and selects outputs match-
ing watermark key-derived feature distributions
via rejection sampling. This approach oper-
ates post-generation, preserving text quality
while naturally generalizing to multilingual
scenarios including programming languages.
Experiments across 4 datasets shows SAE-
MARK’s consistent accuracy, highest text qual-
ity among 8 baselines. SAEMark establishes
a new paradigm: secure, personalizable wa-
termarks that work out-of-the-box for all lan-
guages and closed-source LLMs for ethical and
trustworthy Al systems. !

1 Introduction

Large language models (LLMs) have been de-
ployed across diverse domains and languages, from
creative writing to code synthesis (Brown et al.,
2020; Guo et al., 2024). They are capable of gen-
erating natural text indistinguishable from human
writing. While this capability is valuable, it also
poses risks: misinformation, copyright infringe-
ment, content laundering or even harmful content.
As these models become ubiquitous, the need for
reliable content attribution grows increasingly ur-
gent to address risks of misinformation propaga-
tion, copyright infringement, and content launder-
ing. While watermarking — embedding detectable

'We open-source all our code and datasets anonymously
at: https://anonymous.4open.science/r/SAEMark/

signatures into generated text — offers a promis-
ing solution, existing methods struggle to recon-
cile competing demands: preserving text quality,
application on diverse domains and enabling fine-
grained attribution while respecting user privacy.
Current approaches exhibit critical limitations
that hinder practical deployment. The majority
of existing methods focus on logit manipulation
techniques (e.g. KGW (Kirchenbauer et al., 2023)
and EXP (Aaronson and Kirchner, 2022)) that
degrade generation quality through direct token
probability distortion, while syntactic pattern injec-
tion (Atallah et al., 2002; Hou et al., 2023) fails to
generalize across languages. Specialized methods
like SWEET (Lee et al., 2024) achieve domain-
specific detection but cannot handle multilingual
text or code simultaneously. Most importantly, ex-
isting methods neglect the critical requirement of
fine-grained user attribution—determining not just
whether text is machine-generated, but precisely
which user originated it while preserving privacy.
We address these challenges through SAE-
MARK, a novel framework that utilizes sparse
autoencoder interpretability techniques for safe
content attribution. Sparse autoencoders (Ng et al.,
2011), typically used to analyze LLM internals,
reveal that different language generations exhibit
characteristic patterns in their activation feature
concentrations. Our breakthrough stems from two
key observations: (1) Different generations exhibit
distinct sparse feature activation patterns in their
hidden states, as revealed by SAE analysis (Huben
et al., 2024), and (2) These patterns can be delib-
erately shaped through rejection sampling without
accessing or altering the base LLM’s weights or
decoding algorithm. Through controlled experi-
ments on the C4 dataset (Raffel et al., 2020), we
demonstrate that SAE-derived feature concentra-
tions follow predictable distributions that enable
watermark embedding through sampling—unlike
distribution-preserving methods like DIP (Wu et al.,

https://anonymous.4open.science/r/SAEMark/

2023) that maintain token probabilities at the cost
of detection accuracy.

The SAEMARK framework operates through
three coordinated mechanisms, illustrated in Fig-
ure 1. First, we extract language-agnostic semantic
features using pre-trained SAEs on a small, Anchor
LLM, leveraging their ability to capture syntax-
invariant patterns across different languages and
domains, overcoming the syntactic limitations of
methods like SWEET (Lee et al., 2024). Second,
we generate target distributions from hashed user
credentials through a novel key-binding protocol
that avoids content storage. Third, we select output
candidates through rejection sampling that align
generated text’s feature concentrations with these
targets, preserving the LLM’s original output distri-
bution. This approach fundamentally differs from
prior work by operating on post-generation text
features rather than manipulating generation dy-
namics—enabling API-compatible watermarking
of closed-source models while supporting 1,200+
unique user signatures.

Our contributions are summarized as follows:

* A logit-free watermarking framework that
achieve high detection accuracy and best pre-
serves text quality while being compatible with
API-based and open-source LLMs through post-
generation processing.

 User-specific key-driven attribution that prevents
sensitive data retention while supporting large-
scale users in practical deployment.

e Multilingual generalization through domain-
adaptive unit selection, validated on English,
Chinese, code generation and instruction follow-
ing with up to 99.7% detection accuracy.

To our knowledge, SAEMARK represents a
novel, private watermarking solution capable of
operating in regulated environments—its zero-
knowledge design complies with data protection
laws while providing robust attribution capabilities.
By decoupling watermarking from generation, we
provide a practical path toward accountable LLM
deployment in open, multilingual ecosystems.

2 Preliminaries

2.1 Related Work

LLM watermarking is a technique to embed special
patterns into the output of LLMs, and has tradition-
ally been used to identify LLM generated text from

human-written text (Jawahar et al., 2020). Differ-
ent from post-hoc detection methods (Zellers et al.,
2019) that analyze statistical patterns in existing
text, language model watermarking aims to embed
detectable signatures during generation (Kirchen-
bauer et al., 2023).

Early watermarking methods used syntactic
transformations (Atallah et al., 2002) or machine
translation artifacts (Venugopal et al., 2011), but
with the rise of LLMs, strategies like token-level
manipulation and distribution preservation be-
came prominent. KGW (Kirchenbauer et al., 2023)
introduced watermarking by biasing token selec-
tion with hashed context windows, while methods
like SemStamp (Hou et al., 2023) and PersonaMark
(Zhang et al., 2024) modify sentence-level patterns
while maintaining distribution, though they face
challenges with content that cannot be easily seg-
mented into sentences. These approaches often
rely on hypothesis testing, such as z-tests, to com-
pare observed statistics with expected distributions
under the null hypothesis of unwatermarked text
(Kirchenbauer et al., 2023).

Existing approaches exhibit several limitations.
Most methods compromise generation quality
through direct manipulation of token probabilities
(Kirchenbauer et al., 2023) or syntactic modifica-
tions (Atallah et al., 2002). The challenge of lan-
guage and domain generalization remains largely
unaddressed, with current techniques primarily op-
timized for English text and struggling to handle
multilingual content or specialized domains like
code (Lee et al., 2024). Notably, PersonaMark
(Zhang et al., 2024) represents the only attempt at
personalized watermarking to date, but its reliance
on English-specific syntactic patterns and closed-
source implementation makes its scalability and
cross-lingual capabilities difficult to verify. Fur-
thermore, it lacks critical analysis of performance
scaling with increasing user counts—a crucial con-
sideration for real-world deployment where sys-
tems must support thousands of users while main-
taining detection accuracy. The broader challenge
of enabling robust user-specific attribution while
preserving privacy thus remains fundamentally un-
solved in the field.

2.2 Sparse Autoencoders

Sparse Autoencoders (SAEs) are pre-trained inter-
pretability tools that decompose LLM activations
into human-understandable features (Bricken et al.,
2023). For a given base model M and layer [, an

M Sparse Feature Extraction Module

oY N

(4) Watermark Detection

Input Anchor LLM Sparse Autoencoder Feature Concentration Score
Tt rmeivs e N Activations 2, SRR - @) Target FCS Generation Target FCS
theoretical. Layer 20, Residual Stream: ’ Sentence #1: 0.172
[[e.1,0.0,...0.2], Public Key Generate | Sentence #2: 0.324
Cmmedd i pap SommSERs 0c42f1a Targets | sentence #n: 0.051

@ Watermark Generation
@ Target FCS Generation

Private Key Hashing
User-12345

Generate

Public Key

0c42fla Targets

@ Rejection Sampling Time travel exists
naturally in our universe...
LLM
Sy Stephen Hawking once
_—
. ’ threw a party for...
Prompt "y
Let's talk about time It remains pure
traveling. theoretical.
-«

Generate the full text, sentence by sentence

%‘ a2 SFEM — 028

..................... b L

@ FCS cwlismw%
=

Let's talk about time traveling.

Target FCS

Sentence #1: 0.172
Sentence #2: 0.324

Let's talk about time traveling.
Scientists have shown that time
moves slightly slower for astronauts in
orbit than for people on Earth. (.075
The idea of traveling to the past
remains in the realm of science fiction

It remains purely theoretical. 0.156
While Einstein’s relativity allows
for forward time travel through
time dilation at high speeds,
backwards time travel faces major
paradoxes and likely violates
fundamental physics. 0.318

No known method exists to

Sentence #n: 0.051

due to causality paradoxes. (.42 1
While we can't build time machines

0.052
X

yet, we're all natural time travelers,
perpetually moving forward through
the fourth dimension at a steady pace.

actually achieve it. 10.062

Closest to Target

@) Validation & T-Test

J [Not Watermarked ‘J

)

‘Watermarked

by public key:
0c42fla

o

Figure 1: An overview of SAEMARK.

SAE processes hidden states h; at position ¢ as:

f; = SAE,(hy) (1

where f; € R™ is a sparse vector (typically
m > dim(h;)) with <5% active features. The
SAE is trained through two objectives: 1) recon-
struct original activations, and 2) enforce feature
sparsity via Ly regularization:

L = |[hy — Dec(fy)|” +X |Ife]l1
—_—— —~~
Lrec Lsparse

This training produces features that correspond
to interpretable concepts (Bricken et al., 2023; Tem-
pleton et al., 2024). For instance, SAEs applied to
Gemma 2B (Team et al., 2024)’s final transformer
layer reveal features for "Python function defini-
tions" and "Chinese proper nouns" (Lieberum et al.,
2024).

Our watermarking leverages three key properties
of pre-trained SAE features. First, layer-specific
patterns capture distinct behaviors from different
model layers. Second, multilingual activation al-
lows the same features to fire for equivalent con-
cepts across languages. Third, sparsity enables
efficient analysis through few active features per
token. These properties support language-agnostic
watermark signatures through feature activation
histograms:

1
S(y) = = DT Omy
ly| 4

2

3

where m,;, masks key-specific features deter-
mined by public key pk. The histogram ¢(y)
serves as the verifiable watermark signature, en-
abling detection through distribution alignment
(Sec 3).

2.3 Task Definition

Personalized watermarking for LLMs establishes a
cryptographic binding between generated text and
user identity through two core mechanisms:

Generation Given a base language model M,
secret key sk € SK, and input prompt x, the wa-
termarking algorithm produces text y such that:

y = Mark(M, x, sk) 4

where Mark operates through post-processing
or sampling algorithms of M’s outputs, without
modifying M’s parameters or generation rules.

Detection For any text y’ and public key pk €
PIC, the detection algorithm determines:

Detect(pk,y’) — {0,1} (5)

where 1 indicates y’ contains a watermark trace-
able to pk, with verification requiring only public
information.

The scheme must satisfy three fundamental prop-
erties. First, key privacy ensures computational
infeasibility to derive sk from pk or watermarked
texts. Second, public verifiability allows anyone
to run Detect without secret data. Third, collusion

resistance prevents combining multiple pk’s to re-
move or forge watermarks.

Our approach implements Mark through rejec-
tion sampling over M’s natural outputs, selecting
candidates whose hidden feature distributions align
with sk-derived targets. The Detect function em-
ploys statistical hypothesis testing on these features
using pk, as formalized in section 3. This design
decouples watermarking from decoding algorithms,
preserving M’s output quality while enabling user-
specific attribution.

3 Methodology

Our approach builds on an observation: LLM out-
puts exhibit distinct patterns in their internal rep-
resentations that can be captured through a fixed
sparse autoencoder (SAE). These patterns, while
preserving the semantic content of the text, provide
a natural basis for embedding detectable signa-
tures without compromising generation quality.
The key insight lies in manipulating the sparse
feature concentration of text, through sampling of
generated outputs, rather than directly modifying
models’ weights or decoding process. We employ
a compact Anchor LLM alongside its pretrained
SAE to extract these sparse features from texts pro-
duced by the target LLM requiring watermarking.
This approach enables watermarking that is both
robust and compatible with black-box LL.Ms, while
supporting user-specific personalized attribution.

3.1 Sparse Features as Watermark Basis

Given a token sequence 7', let a; € Rfmodl de-
note the original activation vector at token position
t in a specific layer of the Anchor LLM (where
dmodel = 2048 for Gemma-2B). The SAE with
hidden dimension ds,e = 16384 produces sparse
feature distribution:

d)t = JumpReLU(Weat + be) c Rdsae (6)

where W, is the encoder weight matrix and
JumpReLU zeros out all but the top feature ac-
tivations.

After ¢, is calculated, we can obtain the set of in-
dices corresponding to the most significant feature
for each token by applying a masking operation
and finding the argmax:

S = {argmax;(¢y ©m); | £ =1,2,...,n} (7)

where m is a mask that excludes background
frequent features (occurring in more than 60% of

Normality Tests:

K? Stat: 4.360
K? p-value: 0.113
o KS Stat: 0.022
g KS p-value: 0.730

T T T T T
0.0 0.1 02 03 -2 0 2
Feature Concentration Score Normal Theoretical Quantiles

Probability Density
o
5]

ample Quantiles
o
&

S
o
o
a

Figure 2: Distribution analysis of FCS. FCS distribu-
tion with density estimation (left) and Q-Q plot (right),
with statistical tests supporting normality.

samples) and ¢ denotes the index of ¢, ranging
from [0, 16384).

With S, the Feature Concentration Score (FCS)
can be computed as follows:

B Z?:l ZiES ¢t7i
FOSM) = ==l

The FCS quantifies how sharply these activations
focus on semantically salient features. More details
about FCS calculation are provided in Appendix C.

Our empirical analysis of FCS distribution on
1000 LLM generated sentences on C4 dataset,
shown in Figure 2, reveals that machine-generated
sequences naturally follow a normal distribution
(validated by D’ Agostino’s K2 test, p=0.113, and
Kolmogorov-Smirnov test, p=0.730). This well-
behaved statistical property suggests that FCS
varies naturally across different generations while
maintaining consistent distributional characteris-
tics, making FCS an effective measurement for
watermarking through rejection sampling.

®)

Algorithm 1: Watermark Generation

Input: Prompt c, private key kpiv, LLM G, SAE 6,
units M, attempts K, hyperparameters y, o
Output: Watermarked text ™
for attempt < 1 to K do
x* < c¢// Initialize with prompt
kpu <— Hash(kpy) // Generate public key
{1 }£, < GenerateTargetFCS (kpu, i1, o, M)
// Target sequence
{y:¥M, « 0 // store achieved FCS
values
fori < 1to M do
X < GenerateCandidates(G, z*, N = 50)
Thest <
argmin_ . |ComputeFCS(6(z)) — 7|
¥ < " D Tvest // Append best
candidate
~; — ComputeFCS (6 (pest))
end
if CheckAlignment({7; }, {;}) then
\ return x* // Return if conditions met
end

end
return z* // Return best attempt

3.2 Watermark Generation

Our watermarking process operates on textual units
u; (sentences for natural language, code segments
for programming). Given hyperparameters p, o
and private key kpriy, we:

1. Generate public key kpu, = Hash(kpry). 2.
For each unit, generate target FCS 7; using kpyp as
random seed. 3. Sample N candidates {mj}j-v:l
from LLM G. 4. Select 27 = argmin,_ [y(z;) —
7;| where v computes FCS.

After generating M units, verify global align-
ment between target sequence {7;}}, and ob-
served {v; }M,:

Ymax — Ymin

Range Similarity: Rppin < < Rinaa

Tmax — Tmin

|{Z 1T € [’Yminfymax]H > Omin

M
©))
where Vpax = max; ¥, Ymin = min; ~y;, and
analogously for 7. We set default values for
hyperparameters R,,;, = 0.95, R0 = 1.05,
Omin = 0.95. The process repeats up to K at-
tempts if conditions fail.

Let target FCS 7 € [u — 20,1 + 20] and N
candidates with FCS values y; ~ N'(u,02). For
tolerance k, the probability of finding at least one
candidate within [(1 — k)7, (1 + k)7] satisfies:

Overlap Ratio:

P(Fj: |y — 7| <kr)=1—(1—ppn)™ (10)

where ppip = ({2

is the worst-case success probability.
Consider worst-case 7 = p + 20. For a single
candidate:

_ p(Uhlut20)u

Pmin = P((1 = k)7 < < (14 k)7)
— & ((Hk)(uj%)*u) _ % ((1%)(%20)*#)

g

=021+ k) + kujo) — ®(2(1 — k) — ku/o)

where @ is the standard normal CDF. For N i.i.d.
candidates, probability of at least one success is 1 —
(1 —pmin)’Y. With empirically observed p = 0.142,
o = 0.029, and practical parameters £ = 0.1 and
N = 50, this gives success probability > 0.99
while using a smaller N = 10 would still yield
> (.61 success probability.

This bound ensures efficient watermark-
ing—even with tight tolerance £ = 0.1, using
N = 50 candidates achieves 99.17% success rate
per unit, while smaller batch sizes like N = 20
still maintain 85.32% success probability.

3.3 Watermark Detection

The detection process mirrors generation but fo-
cuses on statistical validation of FCS patterns.
Given a text « and a set of public keys Kpup, we first
segment the input into domain-appropriate units
and compute the observed FCS sequence {~; } for
each segment. For each candidate key k; € Kyup,
we generate the expected FCS sequence {7;} using
the same process as in watermark generation.

Statistical validation combines sequence align-
ment (using criteria from generation) and signifi-
cance testing. We employ Student’s t-test to verify
correlation between observed and expected FCS
sequences. Under the null hypothesis Hy : 8 <0
for regression coefficient 8 in v; = B7; + €, we
consider a text watermarked if we can reject Hy at
significance level « (typically 0.05) with ¢ > ¢, /5
and p < «, while simultaneously satisfying the
alignment conditions. This dual validation ensures
robustness against both random matches and tam-
pering attempts.

Algorithm 2: Watermark Detection

Input: Text z, public keys Kpuw, SAE 0, significance
level o, hyperparameters p, o
Output: Detection result d € Kpup U {0}
{7v;} < [ComputeFCS(6(s))Vs €
SegmentByDomain(z)]
D <+ 0// Initialize detection results
foreach k; € K do
{7} < GenerateTargetFCS(k;, i, o, |y;|) if
CheckAlignment({7; }, {7;}) then
t,p < StudentTTest({v;}, {7;}) if
t > 1tn/2 Ap < athen
| DEDU{ (ki 1)}
end

end
end
return argmax ;. , yep ti if D # () else ()

4 Experiments

Our experiments aims to address key questions: (1)
How effective and accurate is our method com-
pared to existing methods? (2) How does our per-
sonalized watermark scale with exponentially in-
creasing user count? (3) How robust is our method
against adversarial attacks? (4) How each compo-
nent contributes to the overall performance?

Table 1: Dataset Statistics. Characteristics of the mul-
tilingual benchmarks used in evaluation.

C4 LCSTS MBPP PandaLM
(Raffel et al., 2020) (Huetal,, 2015) (Austin et al., 2021) (Wang et al., 2023)
Samples 500 500 257" 169
Language English Chinese Python English

Task Type Completion Summarization Code Generation Instruction Following

From test split of sanitized version of MBPP.

Table 2: Main Results on Text Watermarking Detection. We report detection performance at 1% false positive
rate (FPR). Best results are in bold and second-best are underlined. All metrics are reported as percentages (%).

C4 (English, 2020)

LCSTS (Chinese, 2015) MBPP (Code, 2021)

PandaLLM (Instruction, 2023)

Method

Acc.T Rec.t FI17T Acc.t Rec.t FIT Acc.t Rec.t FI7T Quality?T Acc.T Rec.t FI71
KGW (2023) 992 99.6 99.2 99.1 98.8 99.1 654 319 480 415 899 80.4 88.8
EXP (2022) 99.5 99.6 995 993 994 993 578 167 284 232 793 594 742
UPV (2023a) 86.0 72.0 83.7 905 91.0 905 516 3.1 6.0 360 540 8.0 148
Unigram (2023) 98.8 98.6 98.8 98.2 97.0 98.2 654 319 480 353 533 72 134
DIP (2023) 96.0 92.6 959 97.7 962 97.7 60.7 22.6 36.5 36.5 815 63.8 77.5
Unbiased (2023b) 96.7 944 96.6 97.8 964 97.8 64.0 29.2 448 40.2 743 49.3 65.7
SynthID (2024) 98.2 972 98.2 976 962 97.6 625 26.1 41.0 36.0 81.2 63.0 77.0
SWEET (2024) 99.6 99.6 996 500 00 0.0 724 459 624 472 817 768 862
SAEMARK (OURS) 99.7 99.8 99.7 992 99.6 992 745 50.2 66.3 67.6 86.6 739 84.6

4.1 Experimental Setup

Datasets We evaluate on 4 diverse datasets as
shown in Table 1. We select C4 and MBPP as
they are widely adopted benchmarks for watermark-
ing tasks, and include LCSTS as a representative
Chinese dataset to validate multilingual capabili-
ties. Together, these datasets cover both natural
languages (English, Chinese) and programming
language (Python), enabling comprehensive evalu-
ation across different domains.

Metrics We report Accuracy, Recall and F1 val-
ues at 1% False Positive Rate (FPR) for all datasets.
Additionally, we include PandalLM, which is an
instruction following dataset specifically designed
with LLM-as-a-judge to evaluate the quality of gen-
erated content. We use GPT-40 to perform pairwise
comparison on the quality of watermarked outputs
and un-watermarked outputs for all methods and
report as Quality metric in our results.

Baselines We conduct extensive comparisons us-
ing the MarkLLLM (Pan et al., 2024) toolkit, evalu-
ating against 8 recent watermarking methods. Due
to space constraints, detailed introduction of each
baseline can be found in Appendix B.

Implementation We use Gemma-2B (Team
et al., 2024) as our Anchor LLM and extract activa-
tions from layer 20, with Gemma Scope (Lieberum
et al., 2024) serving as our SAE configured for
16,384 sparse features. For watermark application,
we employ Qwen-2.5-7B-Instruct (Yang et al.,
2024) as the backbone model. Additional hyperpa-
rameters and implementation details are provided
in Appendix A.

4.2 Multilingual Detection Performance

Table 2 shows the watermark detection perfor-
mance of different methods on 4 datasets, we report

the Accuracy, F1 score, and AUC score given 1%
False Positive Rate (FPR). For PandalLM, we re-
port the percentage of the watermarked outputs
that are not judged as degraded compared to the
un-watermarked outputs by GPT-40 to evaluate the
impact of watermarking on the quality of LLM
generated content.

Our evaluation reveals two critical findings: (1)
SAEMARK consistently achieves superior detec-
tion accuracy while preserving text quality and sup-
porting personalized attribution, and (2) existing
methods exhibit fundamental limitations in code
watermarking that our approach alleviates through
domain-adaptive feature alignment.

As Table 2 demonstrates, SAEMARK estab-
lishes new benchmarks with 99.7% F1 on En-
glish (C4) and 99.2% on Chinese (LCSTS), out-
performing baselines even on competitive fields
where the detection accuracy is close to 100%.
Notably, we surpass SWEET—a specialized code
watermarker—by 3.9% F1 on MBPP despite our
general-purpose design. This cross-domain su-
periority stems from SAE features that capture
language-agnostic semantic patterns rather than
surface-level token distributions.

While other methods struggle with language-
specific performance cliffs, such as SWEET’s 0%
recall on Chinese, our SAEMark achieves balanced
accuracy by using syntax-invariant SAE features.
On the MBPP code generation dataset, where the
average F1 score drops by 51% compared to text
domains due to programming languages’ lower en-
tropy and rigid syntax, SAEMark still excels with
a 66.3% F1 score, significantly outperforming al-
ternatives like KGW at 48.0% and EXP at 28.4%.
This highlights SAEMark’s effectiveness in water-
mark embedding even within the constrained space
of syntactically rigid code.

-

o

o
1

90
80 A

70 1
—0— C4 (English)

607 —o— LcsTS (Chinese)

Watermark Accuracy (%)

50

~
T T T T T T T T T

T 1T 71
A S T A VP - St S N V- S SO
S %@\w,{o%\\&{&v@@%@
Number of Users

Figure 3: Scaling analysis of SAEMark. Watermark
accuracy remains above 90% for both C4 and LCSTS
up to 512 users. Accuracy drops with the exponential
increase of users given only 10 sentences for detection.

For PandalLM dataset, SAEMark shows its
strength by achieving watermark quality score of
67.6. This score reflects SAEMark’s capability to
embed watermarks while preserving the quality of
the original text effectively, suggesting that SAE-
Mark manages to maintain a good balance between
watermark detectability and text quality preserva-
tion. It indicates our approach’s potential in offer-
ing a reliable solution that respects the integrity of
the textual content, making it a promising option
for applications where both watermarking effec-
tiveness and text quality are critical considerations.

4.3 User-Specific Attribution

Real-world Al systems require watermarking
that scales to many users while preserving pri-
vacy—storing user-generated content raises ethical
and regulatory concerns. SAEMARK addresses
this through private-public key binding that enables
attribution without storing sensitive data.

Figure 3 shows SAEMARK maintains >90%
accuracy for English and Chinese with up to 1024
different users, using only 10 generated sentences
per detection. At 8192 users, accuracy remains
practically viable at 75% for English and 65% for
Chinese, outperforming random guessing by four
orders of magnitude.

Unlike systems that store user texts for attri-
bution, SAEMARK relies solely on public keys
derived from private keys for detection. This ap-
proach ensures providers never store original user
content while maintaining attribution capability.

Accuracy degrades gracefully despite exponen-
tially increasing collision risk, thanks to our high-
dimensional feature space (R16384) " The 7% ac-
curacy drop per order-of-magnitude user growth

0.8 1

(O]
=
©
& 0.6
]
=
=
%) = (Jnattacked (AUC: 1.000)
& Deletion 5% (AUC: 0.949)
o 0.4 1 ~— Deletion 10% (AUC: 0.858)
E = Deletion 15% (AUC: 0.802)
= ~—— Synonym 5% (AUC: 0.960)
=== Synonym 10% (AUC: 0.871)
0.2 === Synonym 15% (AUC: 0.776)
: = CTXSynonym 5% (AUC: 0.992)
= CTXSynonym 10% (AUC: 0.976)
= CTXSynonym 15% (AUC: 0.953)
Random Guess
0.0 A
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4: Comparison of attacks on SAEMark. ROC
curves showing robust performance against three attack
types with varying intensities (5%, 10%, 15%).

stems from widening feature concentration inter-
vals, mitigated through dynamic range and overlap
constraints (which is discussed in subsection 4.5).
Practical deployments can tune detection strict-
ness—requiring 8/10 matching sentences boosts
accuracy to 99% at 1,024 users with minimal false
attributions.

These results position SAEMARK as the first eth-
ical watermarking solution suitable for regulated
environments. By decoupling attribution from con-
tent storage, our method enables responsible au-
diting in public Al systems while respecting user
privacy. We are first to carry out such experiments
and we think this is a field that safe, ethical and
responsible Al systems should take careful consid-
eration about.

4.4 Adversarial Robustness Evaluation

Adversarial attacks pose significant threats to
watermarking systems, and we evaluate SAE-
MARK against three different types of attacks:
word deletion attacks (Deletion), basic synonym
substitution attacks (Synonym), and context-aware
synonym substitution (CTXSynonym), which rep-
resents one of the more sophisticated attacks. Our
evaluation includes various substitution rates for a
comprehensive assessment. These rates allow us to
understand how well our method performs under
differing levels of adversarial pressure.

As shown in Figure 4, our method demonstrates
notable resilience across adversarial conditions.

)
=
o
o
1
o
[ed
1

o
[e)]
1

/" SAEMark[0.13,0.02]
7 (AUC: 1.00)

Watermark Accuracy (%
True Positive Rate

—o— SAEMark 0.4 __[1,01=[0.20,0.04]
709 —— w/o Dynamic Range, Overlap ;AUC]: OSAGTO 0061
,0]1=[0.30, O.f
w/o Dynamic Range 02 (Kuc: 0.51)
4 -4 , 0]=[0.05,0.02
60 —o— wj/o Overlap _Eﬁu%]: 0F580)5 00
—o— w/ Loose Limits Random Guess
50 T T T T T T T T T T T T " 0.0 o T T T T T
™ o ™ © ™ © 00 0.2 04 06 038 1.0
a4 > NS n_;\/ (&) '\rf/b ff,” 03'\(‘/ ,\Qq’ q/Q&b @q Q)@ql

Number of Users False Positive Rate

Figure 5: Ablation studies on SAEMark. Left: Scaling analysis of watermark accuracy with increasing user count
under different constraint settings. Right: ROC curves for different target FCS distribution parameters (i, o). The
default setting [0.13, 0.02] achieves optimal detection performance compared to alternative configurations.

For word deletion attacks, it maintains an AUC taining distinguishable watermarks at scale.

above 0.80 at a 15% deletion rate. In the case of The right subplot examines detection sensitivity
synonym substitution attacks, our method achieves to FCS distribution parameters. Our default setting
an AUC greater than 0.78 at 15% substitution. achieves optimal ROC performance, while alterna-

Particularly noteworthy is the performance under tive configurations show marked degradation. No-
context-aware synonym substitution. Our method tably, increasing the mean and variance [y = 0.30,
achieves AUC of 0.992, 0.976, and 0.953 at 5%, o = 0.06] leads to substantial performance loss,
10%, and 15% substitution, respectively. These likely due to feature saturation in higher concen-
results indicate the robustness of SAE features in tration regions. Conversely, an overly restrictive
mitigating the impact of highly effective semantic- range [= 0.05, 0 = 0.02] limits the available

preserving edits. feature space, reducing watermark capacity.
These results empirically validate two fundamen-
4.5 Ablation Studies tal aspects of SAEMARK: (1) Dynamic range and

We conduct comprehensive ablation studies val- overlap constraints are essential mechanisms for
idate effectiveness of core components in our scalability over large amount of users, and (2) The
method: (1) the necessity of dynamic range and theoretically derived optimal FCS distribution in-
overlap constraints for multi-user scaling, and (2) deed maximizes detection performance, confirming
the impact of FCS distribution parameters on de- ~ our mathematical analysis.
tection performance. Figure 5 illustrates these anal-
yses. Due to space limits, we also perform ablation
studies on background frequent feature masking =~ SAEMARK introduces a fundamental shift in AI
but report the results in Appendix D. generated content detection through manipulating
The left subplot demonstrates how our con- sparse autoencoder features. Our method achieves
straints enable reliable scaling to large user bases. consistently high detection accuracy across lan-
Removing either dynamic range constraint or over- guages and code while preserving text quality,
lap constraint causes significant accuracy degrada- demonstrating that model interpretability tools can
tion beyond 1,024 users. Without both mechanisms be repurposed for ethical Al systems. By mapping
("w/o Dynamic Range, Overlap"), the performance user keys to activation patterns rather than surface
drops significantly to 64.2% at 8,192 users, which ~ features, we enable scalable attribution without con-
is notably lower than SAEMARK’s accuracy of tent storage—supporting identifying thousands of
88%. Specifically, the accuracy also drops to nearly ~ users with high accuracy using a few sentences.
80% among 8,192 users, with loosen limits of This bridges the gap between technical watermark-
Rupin = 0.8, Rpax = 1.2, and Oy, = 0.8. This ing and practical deployment constraints, offering a
validates our theoretical analysis that controlled privacy-preserving solution that respects linguistic
feature concentration intervals are crucial for main- diversity while meeting regulatory requirements.

5 Conclusion

Limitations

We also found some limitations with our current ap-
proach. First, the method’s effectiveness depends
on SAE feature quality. But be noted that this does
not affect the applicability of our algorithm on the
base LLMs, since we only apply SAEs on the An-
chor LLM and require only access to the output
texts from the base LLM, and we have a lot of pre-
trained SAEs from the open-source community that
exhibit strong performance in interpreting model
outputs. Second, detection watermarks effectively
requires open-ended generation tasks, making at-
tribution challenging for very short outputs like
multiple-choice problems that only contain option
keys. However this is a universal challenge for
all watermarking algorithms, since short texts in-
evitably contains less information and less space to
inject additional signatures.

These constraints reflect tradeoffs in privacy-
preserving watermarking. Future work could ex-
plore dynamic candidate pruning to address these
limitations. Nevertheless, our experiments across
4 benchmarks suggest these constraints pose man-
ageable practical impacts compared to the system’s
ethical advantages.

References

S. Aaronson and H. Kirchner. 2022. Watermarking
gpt outputs. https://www.scottaaronson.com/
talks/watermark.ppt.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Mikhail J Atallah, Victor Raskin, Christian F Hempel-
mann, Mercan Karahan, Radu Sion, Umut Topkara,
and Katrina E Triezenberg. 2002. Natural language
watermarking and tamperproofing. In International
workshop on information hiding, pages 196-212.
Springer.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen,
Brayden McLean, Josiah E Burke, Tristan Hume,
Shan Carter, Tom Henighan, and Christopher
Olah. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Zhongze Cai, Shang Liu, Hanzhao Wang, Huaiyang
Zhong, and Xiaocheng Li. 2024. Towards better
statistical understanding of watermarking llms. arXiv
preprint arXiv:2403.13027.

Liang Chen, Yatao Bian, Yang Deng, Shuaiyi Li,
Bingzhe Wu, Peilin Zhao, and Kam-fai Wong. 2023.
X-mark: Towards lossless watermarking through lex-
ical redundancy. arXiv preprint arXiv:2311.09832.

Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu,
Tianxin Wei, Hyunsik Yoo, Zhichen Zeng, Deqing
Yang, and Hanghang Tong. 2024. Wapiti: A water-
mark for finetuned open-source 1lms. arXiv preprint
arXiv:2410.06467.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-
Sen Huang, Rob McAdam, Johannes Welbl, Vandana
Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana
Matejovicova, et al. 2024. Scalable watermarking
for identifying large language model outputs. Nature,
634(8035):818-823.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Watten-
berg, and Christopher Olah. 2022. Toy mod-
els of superposition. Transformer Circuits
Thread. https://transformer-circuits.pub/
2022/toy_model/index.html.

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

Thibaud Gloaguen, Nikola Jovanovi¢, Robin Staab,
and Martin Vechev. 2024. Black-box detection
of language model watermarks. arXiv preprint
arXiv:2405.20777.

Varun Godbole, George E. Dahl, Justin Gilmer, Christo-
pher J. Shallue, and Zachary Nado. 2023. Deep learn-
ing tuning playbook. Version 1.0.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. 2016. Deep learning, volume 1.
MIT Press.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tat-
sunori Hashimoto. 2023. On the learnability of
watermarks for language models. arXiv preprint
arXiv:2312.04469.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen,
Junxuan Wang, Yunhua Zhou, Frances Liu, Qipeng
Guo, Xuanjing Huang, Zuxuan Wu, et al. 2024.
Llama scope: Extracting millions of features from
llama-3.1-8b with sparse autoencoders. arXiv
preprint arXiv:2410.20526.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye
Teh. 2006. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527-1554.

Lynette Hirschman and Robert Gaizauskas. 2001. Natu-
ral language question answering: the view from here.
natural language engineering, 7(4):275-300.

Abe Bohan Hou, Jingyu Zhang, Tianxing He,
Yichen Wang, Yung-Sung Chuang, Hongwei Wang,
Lingfeng Shen, Benjamin Van Durme, Daniel
Khashabi, and Yulia Tsvetkov. 2023. Semstamp: A
semantic watermark with paraphrastic robustness for
text generation. arXiv preprint arXiv:2310.03991.

Baotian Hu, Qingcai Chen, and Fangze Zhu. 2015. Lc-
sts: A large scale chinese short text summarization
dataset. arXiv preprint arXiv:1506.05865.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023a.
Radar: Robust ai-text detection via adversarial learn-
ing. Advances in Neural Information Processing
Systems, 36:15077-15095.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2023b. Unbi-
ased watermark for large language models. arXiv
preprint arXiv:2310.10669.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2023c. Unbi-
ased watermark for large language models. arXiv
preprint arXiv:2310.10669.

Robert Huben, Hoagy Cunningham, Logan Riggs,
Aidan Ewart, and Lee Sharkey. 2024. Sparse autoen-
coders find highly interpretable features in language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Mingjia Huo, Sai Ashish Somayajula, Youwei Liang,
Ruisi Zhang, Farinaz Koushanfar, and Pengtao Xie.
2024. Token-specific watermarking with enhanced
detectability and semantic coherence for large lan-
guage models. arXiv preprint arXiv:2402.18059.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ganesh Jawahar, Muhammad Abdul-Mageed, and
Laks VS Lakshmanan. 2020. Automatic detection
of machine generated text: A critical survey. arXiv
preprint arXiv:2011.01314.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Infer-
national Conference on Machine Learning, pages
17061-17084. PMLR.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2023. Paraphras-
ing evades detectors of ai-generated text, but retrieval
is an effective defense. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 27469—
27500. Curran Associates, Inc.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2023. Robust
distortion-free watermarks for language models.
arXiv preprint arXiv:2307.15593.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453—
466.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2024. Who wrote this code? watermarking for
code generation. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4890-4911,
Bangkok, Thailand. Association for Computational
Linguistics.

Tom Lieberum, Senthooran Rajamanoharan, Arthur
Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramar, Anca Dragan, Rohin Shah,
and Neel Nanda. 2024. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2.
arXiv preprint arXiv:2408.05147.

http://github.com/google-research/tuning_playbook
http://github.com/google-research/tuning_playbook
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://proceedings.neurips.cc/paper_files/paper/2023/file/575c450013d0e99e4b0ecf82bd1afaa4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/575c450013d0e99e4b0ecf82bd1afaa4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/575c450013d0e99e4b0ecf82bd1afaa4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.268
https://doi.org/10.18653/v1/2024.acl-long.268

Aiwei Liu, Leyi Pan, Xuming Hu, Shu’ang Li, Lijie
Wen, Irwin King, and Philip S Yu. 2023a. A private
watermark for large language models. arXiv preprint
arXiv:2307.16230.

Aiwei Liu, Leyi Pan, Xuming Hu, Shu’ang Li, Lijie
Wen, Irwin King, and Philip S Yu. 2023b. A private
watermark for large language models. arXiv preprint
arXiv:2307.16230.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin
King. 2024. An entropy-based text watermarking
detection method. arXiv preprint arXiv:2403.13485.

Yiyang Luo, Ke Lin, and Chao Gu. 2024. Lost in over-
lap: Exploring watermark collision in llms. arXiv
preprint arXiv:2403.10020.

Minjia Mao, Dongjun Wei, Zeyu Chen, Xiao Fang, and
Michael Chau. 2024. A watermark for low-entropy
and unbiased generation in large language models.
arXiv preprint arXiv:2405.14604.

Piotr Molenda, Adian Liusie, and Mark JF Gales. 2024.
Waterjudge: Quality-detection trade-off when wa-
termarking large language models. arXiv preprint
arXiv:2403.19548.

Alexander Nemecek, Yuzhou Jiang, and Erman Ayday.
2024. Topic-based watermarks for llm-generated text.
arXiv preprint arXiv:2404.02138.

Andrew Ng et al. 2011. Sparse autoencoder. CS294A
Lecture notes, 72(2011):1-19.

OpenAl. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Preprint,

OpenAl. 2024. ol system card. https://cdn.openai.
com/o1-system-card.pdf. Accessed: Dec 9,
2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuandong
Zhao, Yijian Lu, Binglin Zhou, Shuliang Liu, Xum-
ing Hu, Lijie Wen, et al. 2024. Markllm: An open-
source toolkit for llm watermarking. arXiv preprint
arXiv:2405.10051.

Qi Pang, Shengyuan Hu, Wenting Zheng, and Virginia
Smith. 2024. Attacking llm watermarks by exploiting
their strengths. In ICLR 2024 Workshop on Secure
and Trustworthy Large Language Models.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected? arXiv
preprint arXiv:2303.11156.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In Chinese Computational Linguistics: 18th China
National Conference, CCL 2019, Kunming, China,
October 18-20, 2019, Proceedings 18, pages 194—
206. Springer.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack
Lindsey, Trenton Bricken, Brian Chen, Adam Pearce,
Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy
Cunningham, Nicholas L Turner, Callum McDougall,
Monte MacDiarmid, C. Daniel Freeman, Theodore R.
Sumers, Edward Rees, Joshua Batson, Adam Jermyn,
Shan Carter, Chris Olah, and Tom Henighan. 2024.
Scaling monosemanticity: Extracting interpretable
features from claude 3 sonnet. Transformer Circuits
Thread.

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf.
2022. Natural language processing with transform-
ers. " O’Reilly Media, Inc.".

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ashish Venugopal, Jakob Uszkoreit, David Talbot,
Franz Josef Och, and Juri Ganitkevitch. 2011. Water-
marking the outputs of structured prediction with an
application in statistical machine translation. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1363—
1372.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

Yidong Wang, Zhuohao Yu, Jindong Wang, Qiang Heng,
Hao Chen, Wei Ye, Rui Xie, Xing Xie, and Shikun
Zhang. 2024. Exploring vision-language models for
imbalanced learning. International Journal of Com-
puter Vision, 132(1):224-237.

https://arxiv.org/abs/2303.08774
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi
Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
Rui Xie, Jindong Wang, Xing Xie, et al. 2023.
Pandalm: An automatic evaluation benchmark for
IIm instruction tuning optimization. arXiv preprint
arXiv:2306.05087.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yihan Wu, Zhengmian Hu, Hongyang Zhang, and Heng
Huang. 2023. Dipmark: A stealthy, efficient and
resilient watermark for large language models. arXiv
preprint arXiv:2310.07710.

Rui Xie, Zhengran Zeng, Zhuohao Yu, Chang Gao,
Shikun Zhang, and Wei Ye. 2024. Codeshell techni-
cal report. arXiv preprint arXiv:2403.15747.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Linyi Yang, Shuibai Zhang, Libo Qin, Yafu Li, Yi-
dong Wang, Hanmeng Liu, Jindong Wang, Xing
Xie, and Yue Zhang. 2022. Glue-x: Evaluating nat-
ural language understanding models from an out-
of-distribution generalization perspective. arXiv
preprint arXiv:2211.08073.

Linyi Yang, Shuibai Zhang, Zhuohao Yu, Guangsheng
Bao, Yidong Wang, Jindong Wang, Ruochen Xu, Wei
Ye, Xing Xie, Weizhu Chen, et al. 2023. Supervised
knowledge makes large language models better in-
context learners. arXiv preprint arXiv:2312.15918.

Wenjin Yao, Yidong Wang, Zhuohao Yu, Rui Xie,
Shikun Zhang, and Wei Ye. 2024. Pure: Aligning
Ilm via pluggable query reformulation for enhanced
helpfulness. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 8721—
8744.

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang,
Wei Ye, Jindong Wang, Xing Xie, Yue Zhang,
and Shikun Zhang. 2024a. Kieval: A knowledge-
grounded interactive evaluation framework for large
language models. arXiv preprint arXiv:2402.15043.

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang,
Zhengran Zeng, Wei Ye, Jindong Wang, Yue Zhang,
and Shikun Zhang. 2024b. Freeeval: A modu-
lar framework for trustworthy and efficient eval-

uation of large language models. arXiv preprint
arXiv:2404.06003.

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran
Zeng, Jindong Wang, Wei Ye, and Shikun Zhang.
2024c. Outcome-refining process supervision for
code generation. arXiv preprint arXiv:2412.15118.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. Advances in neural information processing
systems, 32.

Yuehan Zhang, Peizhuo Lv, Yinpeng Liu, Yongqiang
Ma, Wei Lu, Xiaofeng Wang, Xiaozhong Liu, and
Jiawei Liu. 2024. Personamark: Personalized llm wa-
termarking for model protection and user attribution.
arXiv preprint arXiv:2409.09739.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and
Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. arXiv preprint
arXiv:2306.17439.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. 2022.
Distillation-resistant watermarking for model protec-
tion in nlp. arXiv preprint arXiv:2210.03312.

Xuandong Zhao, Chenwen Liao, Yu-Xiang Wang, and
Lei Li. 2024. Efficiently identifying watermarked
segments in mixed-source texts. arXiv preprint
arXiv:2410.03600.

A Experimental Setup and
Hyperparameter Details

This appendix provides a comprehensive descrip-
tion of the experimental setup, encompassing the
hyperparameters and software configurations em-
ployed in this study.

A.1 Hyperparameters (SAEMARK)

The following hyperparameters were used for the
SAEMARK:

* Candidate Number (N): 50. This parameter
denotes the number of candidate sequences
sampled from the LLM.

¢ Unit Number (M): 10. This specifies the num-
ber of discrete generation units produced by
the model per attempt.

e Attempt Number (K): 15. This metric repre-
sents the maximum times that the algorithm
attempts to get an alignment.

A.2 Model Configuration

The section outlines the hyperparameter by the
model during generation.

¢ Base Model: Qwen2.5-7B-Instruct. This
is the model on which the algorithm operates.

* Sampling: This algorithm enables the model
to generate various candidates, for which the
parameter do_sample is set to T'rue.

* Temperature: This controls the randomness
of the predictions by scaling the logits. The
metric is set to 0.7.

* Max New Tokens: This specifies the maxi-
mum number of new tokens that the model
can generate, which is 20 during generation.

B Introduction to baselines

KGW (Kirchenbauer et al., 2023) The Key-
based Green-list Watermarking (KGW) algorithm
is a modern approach for watermarking text gener-
ated by LLMs. This method builds upon the work
of (Kirchenbauer et al., 2023), who introduced a
watermarking scheme that divides the token set
into 'red’ and ’green’ lists based on a secret key
and previously generated tokens.

Key features of KGW include the bifurcation
of the token set into 'red’ and ’green’ lists, the

use of a random seed dependent on a secret key
and hash of prior tokens, reweighting of token log-
probabilities to favor green tokens, and the intro-
duction of permutation-based reweight strategies.
These elements work in concert to create an effec-
tive watermarking system that balances detectabil-
ity with output quality preservation.

The approach offers a balance between water-
mark embedding and preservation of text qual-
ity, addressing challenges faced by previous wa-
termarking methods.

Unigram (Zhao et al., 2023) The Unigram-
Watermark and KGW algorithms, both designed
for watermarking LL.M-generated text, have dis-
tinct characteristics. Unigram-Watermark operates
on individual tokens, using a consistent green list
for each new token, while KGW employs a K-
gram approach with varying green lists. Unigram-
Watermark’s simplicity offers enhanced robustness
against editing attacks and requires minimal im-
plementation overhead. This streamlined approach
leads to potential efficiency gains in both water-
mark embedding and detection processes, setting
it apart from the more complex K-gram nature of
KGW.

SWEET (Lee et al., 2024) The Segment-Wise
Entropy-based Embedding Technique (SWEET)
is an innovative approach to watermarking code
generated by large language models. SWEET ad-
dresses the challenge of maintaining code func-
tionality while embedding detectable watermarks.
It operates by selectively applying watermarking
to high-entropy segments of the generated code,
thereby preserving the overall code quality. This
method significantly improves code quality preser-
vation while outperforming baseline methods in de-
tecting machine-generated code. SWEET achieves
this by removing low-entropy segments during both
the generation and detection of watermarks, effec-
tively balancing the trade-off between detection
capability and code quality degradation.

UPYV (Liu et al., 2023a) The key feature of UPV
is its use of separate neural networks for watermark
generation and detection, addressing the limitation
of shared key usage in previous methods. This
separation allows for public verification without
compromising the watermark’s security. UPV em-
ploys shared token embedding parameters between
the generation and detection networks, enabling
efficient and accurate watermark detection. The

algorithm embeds small watermark signals into the
LLM’s logits during generation, similar to existing
methods, but uniquely conceals the watermarking
details in the detection process. This approach
ensures high detection accuracy while maintain-
ing computational efficiency, and significantly in-
creases the complexity of forging the watermark,
thus enhancing its security in public detection sce-
narios.

DIP (Wu et al., 2023) The Distribution-
Preserving Watermarking (DIP) algorithm repre-
sents a significant advancement in watermarking
techniques for large language models (LLMs).
DIP’s innovation is its ability to maintain the orig-
inal token distribution of the LLM while embed-
ding a watermark, addressing a critical limitation
of previous methods. This distribution-preserving
property is achieved through a novel permutation-
based approach that reweights token probabilities
without altering the overall distribution. DIP offers
provable guarantees on distribution preservation,
detectability, and resilience against text modifica-
tions. The algorithm employs a texture key gener-
ation mechanism that considers multiple previous
tokens, enhancing its robustness. Notably, DIP
maintains text quality comparable to the original
LLM output, owing to its distribution-preserving
nature.

Unbiased (Hu et al., 2023b) Unbiased water-
marking and DIP watermarking are closely related
concepts in the field of text watermarking for large
language models (LLMs). Both approaches aim
to embed watermarks while maintaining the orig-
inal distribution of the LLM’s output. The key
distinction lies in their theoretical foundations and
implementation. Unbiased watermarking ensures
that the expectation of the watermarked distribu-
tion matches the original distribution, while DIP
watermarking guarantees that the watermarked dis-
tribution is identical to the original for every in-
put. In essence, unbiased watermarking can be
viewed as a relaxed version of DIP watermarking.
While unbiased watermarking allows for small de-
viations in individual instances, DIP watermarking
maintains strict distribution preservation. This re-
lationship highlights a spectrum of watermarking
techniques, where unbiased methods offer a bal-
ance between practicality and distribution preserva-
tion, while DIP methods provide stronger theoreti-
cal guarantees at potentially higher computational
costs.

SynthID (Dathathri et al., 2024) SynthID is an
advanced watermarking method for large language
models (LLMs) that builds upon previous work in
generative text watermarking. The key innovation
of SynthID lies in its use of Tournament sampling,
which provides superior detectability compared to
existing methods. This approach offers rigorous
and customizable non-distortion properties, allow-
ing for text quality preservation while maintaining
effective watermarking. SynthID has been empir-
ically validated, including through real user feed-
back from millions of chatbot interactions. Notably,
the method introduces an algorithm to combine gen-
erative watermarking with speculative sampling,
enabling efficient deployment in high-performance,
large-scale production LLMs.

EXP (Aaronson and Kirchner, 2022) EXP em-
ploys a pseudorandom function f,() with a secret
seed s known only to the model provider. Given
previous tokens wy, ..., w;—1 and GPT’s probability
distribution pq, ..., px for the next token wy, the al-
gorithm generates real values r; € [0, 1] using f5().
EXP then selects the token ¢ that maximizes ril /P
To detect the watermark, it calculates Zthl In =
and compares it to a threshold. The scheme pré—
serves the original token distribution while embed-
ding a detectable watermark, with theoretical analy-
sis showing distinct expected values for normal and
watermarked text. The number of tokens required
for reliable detection is O(é log %), where o is the
average entropy per token and ¢ is the acceptable

misclassification probability.

C Details of FCS Generation

This section elaborates on the methodology behind
the generation of the Feature Concentration Score
(FCS). The process is illustrated in Figure Figure 6,
which outlines four key steps.

Extracting SAE Features for Each Token
Given a token sequence 7', we utilize SAE to derive
an activation vector ¢, for each token position t.
This vector, ¢;, embodies the representation of the
token at position ¢ with a dimensionality of 16,384.

Selecting the Most Significant Feature For ev-
ery activation vector ¢, our objective is to identify
the most significant feature, which serves as a de-
scriptor for the token at position ¢. This is achieved
through applying the function argmaz;(¢ © m);,
where m is a mask. The output of this function

Input: <Would> <you> <be> <able> <to> |<travel>| <through> <time>

1. Extract SAE features for
each token

argmax;(@; © m);

2. Select the most significant feature

- = —_—— == == == —1—1
7562 | l10004|

5482 | !

10376 | ' 1670 | ! 11023 |
L

3. Aggregate most significant feaﬁtg[gg?i/,

- -
Dosor | T rooos
L-—- L_-- N

)

1670 0.2

5482 0.9

7562 0.1

Feature Set 9407 0.05

S 10004 0.01

10376 0.3

11023 0.6

\

0.0

0.0 0.0 —

0.0

Y
Z Lt 7.87
€S

0.0 0.0

=0.12

61.9

0.1 0.05

1911

n
FCS= — =

0.2 0.15

0.8 0.9

0.0 0.0

—~ = = SAE Feature Indices

—— SAE Feature Values

0.04 UUZ/

4. Calculate Feature Concentration Score

Figure 6: An example of Feature Concentration Score (FCS) calculation process.

Algorithm 3: ComputeFCS(0(T"))

Input: Token sequence 7", SAE 6 for the entire
sequence
Output: Feature Concentration Score (FCS)
® « O(T), yielding activation vectors ¢1, 2, ..., Pn
for each token position in T;
indices < [[;
fort = 1tondo
¢¢ is the activation vector for token at position ¢;
index + arg max;(¢r © m);;

Append index to indices;
end
featureSet + set(indices), removing duplicates;
featureSum + 0;
total Norm < O;
fort =1tondo
tokenSignificance < 0;
foreach i € featureSet do

tokenSignificance <

tokenSignificance 4+ ¢¢q;
end
featureSum <+
featureSum + tokenSignificance;

total Norm < totalNorm + ||¢¢||1;
// Accumulate significant features and

norms

end
FCS «— featureSum ,

totalNorm °

// Calculate final FCS
return F'C'S;

yields the indices corresponding to the most promi-
nent feature, denoted as "SAE Feature Indices" in
Figure Figure 6.

Aggregating Most Significant Features As de-
picted in Figure Figure 6, each token’s position
t has its most significant feature. However, when
summarizing the critical features of the entire se-
quence T, redundancies may occur. To address this,
we employ a set operation to eliminate duplicate
entries among the significant features, resulting in
a unique collection termed as "Feature Set S".

Calculating Feature Concentration Score
Upon obtaining the Feature Set S, we aim to
quantify how these significant features contribute
to the overall sequence 7' concerning SAE feature
values. For each ¢;, we compute the sum of
¢¢.i» where 7 represents the index belonging to S.
This aggregate score measures the contribution
of significant features to individual tokens within
T. Accumulating this metric across all tokens
provides a global measure for the sequence.

To evaluate the total activation value of SAE fea-
tures over the sequence 7', we apply the L1 norm
to each ¢, obtaining the sum of absolute values
for each token’s feature vector. Summing these
across all tokens yields the total SAE value for 7T'.
The Feature Concentration Score (FCS) is defined
as the ratio of the accumulated contributions of
significant features to the total SAE feature values.

The detailed steps for computing the FCS are

outlined in algorithm 3.

This score effectively captures the concentration
of key features within a token sequence and is use-
ful for applications in watermark embedding.

D Additional Experimental Results

D.1 Adversarial Robustness Evaluation

Word Deletion Attack In the main text, we
conducted experiments using the "maintain con-
tent structure" version of the word deletion at-
tack. However, the original word deletion attack
involves splitting a paragraph and randomly remov-
ing words, which disrupts the structure that water-
marking methods rely on, making it harder for the
detection system to identify the watermark. To ad-
dress this issue, we modified the attack to preserve
structure while still performing word deletions. By
maintaining the integrity of the structure, the attack
bypasses watermark detection more effectively.

In our experimental results, we compare two
versions of the word deletion attack. The "keep
structure" method, represented in a darker color,
shows more robust performance with higher AUC
values (0.949 at ¢ = 0.05 and 0.858 at ¢ = 0.1). In
contrast, the "not keep structure" method, shown
in a lighter color, demonstrates a decline in per-
formance, with AUC values dropping to 0.901 at
e = 0.05 and 0.825 at ¢ = 0.1. These results in-
dicate that preserving the content structure during
the attack strengthens the watermark’s resistance,
whereas random word deletions that disrupt the
structure reduce detection accuracy.

As shown in the Figure 7, the "keep struc-
ture" method outperforms the "not keep structure"
method in terms of AUC, demonstrating its effec-
tiveness in watermark resistance.

Basic Synonym Substitution Attack Our study
also examines "keeping structure” versus "not keep-
ing structure” approaches in the context of basic
synonym substitution attacks, which are less likely
to disrupt the content’s structural integrity.

Figure 8 shows ROC curves comparing model
performance under different conditions, with the
original non-structure-preserving method in lighter
shades and the modified structure-preserving
method in darker hues. The analysis reveals min-
imal differences in AUC values between the two,
indicating similar model resilience to both forms of
synonym substitution. Notably, the model demon-
strates performance robustness that exceeds that

1.0

0.8

o
o

o
~

True Positive Rate

7’ = = Random Guess
Ve === unattacked, AUC:1.000
0.2 7 keep structure, £ = 0.05, AUC:0.949
7’ —— keep structure, € = 0.1, AUC:0.858
’ not keep structure, £ = 0.05, AUC:0.901
7 not keep structure, £ = 0.1, AUC:0.825

0.0{ ¥
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7: Word Deletion on SAEMark ROC curves
highlighting the performance difference between "keep
structure" and "not keep structure" methods under word
deletion attacks with varying intensities (5%, 10%).

1.0

0.8

True Positive Rate

s = = Random Guess

’ = unattacked, AUC:1.000
0.2 7’ —— keep structure, £ = 0.05, AUC:0.960
7’ = keep structure, £ = 0.1, AUC:0.871
, not keep structure, £ = 0.05, AUC:0.965
7 not keep structure, & = 0.1, AUC:0.867

0.0{¥
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 8: Basic Synonym Substitution on SAEMark
ROC curves comparing "keep structure" and "not keep
structure" methods under basic synonym substitution
attacks at different intensities (5%, 10%).

observed in deletion attack scenarios, reflected by
AUC scores that remain close to the baseline.

Context-aware Synonym Substitution Attack
Due to our algorithm’s prominent performance
against context-aware synonym attack. More in-
tensities (20%, 30%, 40%, 50%) are carried upon
these kinds of attacking.

The results of the context-aware watermarking
method, shown in Figure 9 tested under this at-
tack, demonstrate substantial robustness. Even
with high substitution ratios—up to 50% token re-
placement—the AUC remains relatively high, high-
lighting the method’s ability to maintain detection
performance under significant adversarial pressure.

1.0

0.8

e
o

e
~

True Positive Rate

e == = Random Guess
7’ === unattacked, AUC:1.000

7’ £ =0.1, AUC:0.976
0-2 e —— £=0.2, AUC:0.947
// =—— £=0.3, AUC:0.890
’ —— £=0.4, AUC:0.854
PR =—— £=0.5, AUC:0.823
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 9: Context-Aware Synonym Substitution on
SAEMark ROC curves comparing "keep structure" and
"not keep structure" methods under basic synonym sub-
stitution attacks at different intensities (5%, 10%).

The ROC curves further corroborate this, show-
ing that the true positive rate remains consistently
high across varying false positive levels, even as
attack intensity increases. This demonstrates a well-
balanced trade-off between true and false positives,
ensuring reliable detection without excessive false
alarms. These findings affirm that the watermark-
ing method is both effective and robust, offering re-
liable protection against sophisticated attacks while
maintaining strong detection accuracy.

D.2 Ablation Study on Background Frequent
Features

In section 3, we utilize ¢, ® m, where m is a mask
that excludes background frequent features.

In this section, we generate the Feature Concen-
tration Score (FCS) without using m and conduct
ROC experiments for further analysis. To evaluate
the impact of background frequent feature mask-
ing on our model’s performance, we performed an
ablation study.

With background frequent feature masking in
place, the model achieved an AUC of almost 1.0.
Upon removing this masking, the AUC dropped
to 0.85, as illustrated in Figure 10. This signifi-
cant decrease demonstrates that background fre-
quent feature masking plays a crucial role in our
algorithm, emphasizing its importance for optimal
performance.

D.3 Use Of AI Assistants

We employed Al assistants for two tasks: (1) gener-
ating routine code implementations and boilerplate

1.0

0.8

o
o

True Positive Rate
=
=

0.2

7’ = = Random Guess

’, —— w/ background frequent feature masking , AUC:1.000
s —— w/o background frequent feature masking, AUC:0.845

0.0{ ¥
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 10: Ablation on Background Frequent Fea-
ture Masking The ROC curve compares the perfor-
mance with and without background frequent feature
masking.

functions, and (2) performing grammatical review
and sentence-level editing of the manuscript. All
Al-generated content underwent thorough manual
review. The core research methodology, findings,
and analysis remain entirely our own work.

	Introduction
	Preliminaries
	Related Work
	Sparse Autoencoders
	Task Definition

	Methodology
	Sparse Features as Watermark Basis
	Watermark Generation
	Watermark Detection

	Experiments
	Experimental Setup
	Multilingual Detection Performance
	User-Specific Attribution
	Adversarial Robustness Evaluation
	Ablation Studies

	Conclusion
	Experimental Setup and Hyperparameter Details
	Hyperparameters (SAEMark)
	Model Configuration

	Introduction to baselines
	Details of FCS Generation
	Additional Experimental Results
	Adversarial Robustness Evaluation
	Ablation Study on Background Frequent Features
	Use Of AI Assistants

