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Abstract

Watermarking LLM-generated text is critical
for content attribution and misinformation pre-
vention. However, existing methods compro-
mise text quality, require white-box model ac-
cess and logit manipulation —limitations that
exclude API-based models and multilingual /
domain-specific use cases. We propose SAE-
MARK, a user-specific watermarking method
that embeds personalized signatures without
altering logits. SAEMARK utilizes Sparse Au-
toencoder (SAE) to extract semantic features
of generated texts and selects outputs match-
ing watermark key-derived feature distributions
via rejection sampling. This approach oper-
ates post-generation, preserving text quality
while naturally generalizing to multilingual
scenarios including programming languages.
Experiments across 4 datasets shows SAE-
MARK’s consistent accuracy, highest text qual-
ity among 8 baselines. SAEMark establishes
a new paradigm: secure, personalizable wa-
termarks that work out-of-the-box for all lan-
guages and closed-source LLMs for ethical and
trustworthy AI systems. 1

1 Introduction

Large language models (LLMs) have been de-
ployed across diverse domains and languages, from
creative writing to code synthesis (Brown et al.,
2020; Guo et al., 2024). They are capable of gen-
erating natural text indistinguishable from human
writing. While this capability is valuable, it also
poses risks: misinformation, copyright infringe-
ment, content laundering or even harmful content.
As these models become ubiquitous, the need for
reliable content attribution grows increasingly ur-
gent to address risks of misinformation propaga-
tion, copyright infringement, and content launder-
ing. While watermarking – embedding detectable

1We open-source all our code and datasets anonymously
at: https://anonymous.4open.science/r/SAEMark/

signatures into generated text – offers a promis-
ing solution, existing methods struggle to recon-
cile competing demands: preserving text quality,
application on diverse domains and enabling fine-
grained attribution while respecting user privacy.

Current approaches exhibit critical limitations
that hinder practical deployment. The majority
of existing methods focus on logit manipulation
techniques (e.g. KGW (Kirchenbauer et al., 2023)
and EXP (Aaronson and Kirchner, 2022)) that
degrade generation quality through direct token
probability distortion, while syntactic pattern injec-
tion (Atallah et al., 2002; Hou et al., 2023) fails to
generalize across languages. Specialized methods
like SWEET (Lee et al., 2024) achieve domain-
specific detection but cannot handle multilingual
text or code simultaneously. Most importantly, ex-
isting methods neglect the critical requirement of
fine-grained user attribution—determining not just
whether text is machine-generated, but precisely
which user originated it while preserving privacy.

We address these challenges through SAE-
MARK, a novel framework that utilizes sparse
autoencoder interpretability techniques for safe
content attribution. Sparse autoencoders (Ng et al.,
2011), typically used to analyze LLM internals,
reveal that different language generations exhibit
characteristic patterns in their activation feature
concentrations. Our breakthrough stems from two
key observations: (1) Different generations exhibit
distinct sparse feature activation patterns in their
hidden states, as revealed by SAE analysis (Huben
et al., 2024), and (2) These patterns can be delib-
erately shaped through rejection sampling without
accessing or altering the base LLM’s weights or
decoding algorithm. Through controlled experi-
ments on the C4 dataset (Raffel et al., 2020), we
demonstrate that SAE-derived feature concentra-
tions follow predictable distributions that enable
watermark embedding through sampling—unlike
distribution-preserving methods like DIP (Wu et al.,
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2023) that maintain token probabilities at the cost
of detection accuracy.

The SAEMARK framework operates through
three coordinated mechanisms, illustrated in Fig-
ure 1. First, we extract language-agnostic semantic
features using pre-trained SAEs on a small, Anchor
LLM, leveraging their ability to capture syntax-
invariant patterns across different languages and
domains, overcoming the syntactic limitations of
methods like SWEET (Lee et al., 2024). Second,
we generate target distributions from hashed user
credentials through a novel key-binding protocol
that avoids content storage. Third, we select output
candidates through rejection sampling that align
generated text’s feature concentrations with these
targets, preserving the LLM’s original output distri-
bution. This approach fundamentally differs from
prior work by operating on post-generation text
features rather than manipulating generation dy-
namics—enabling API-compatible watermarking
of closed-source models while supporting 1,200+
unique user signatures.

Our contributions are summarized as follows:

• A logit-free watermarking framework that
achieve high detection accuracy and best pre-
serves text quality while being compatible with
API-based and open-source LLMs through post-
generation processing.

• User-specific key-driven attribution that prevents
sensitive data retention while supporting large-
scale users in practical deployment.

• Multilingual generalization through domain-
adaptive unit selection, validated on English,
Chinese, code generation and instruction follow-
ing with up to 99.7% detection accuracy.

To our knowledge, SAEMARK represents a
novel, private watermarking solution capable of
operating in regulated environments—its zero-
knowledge design complies with data protection
laws while providing robust attribution capabilities.
By decoupling watermarking from generation, we
provide a practical path toward accountable LLM
deployment in open, multilingual ecosystems.

2 Preliminaries

2.1 Related Work

LLM watermarking is a technique to embed special
patterns into the output of LLMs, and has tradition-
ally been used to identify LLM generated text from

human-written text (Jawahar et al., 2020). Differ-
ent from post-hoc detection methods (Zellers et al.,
2019) that analyze statistical patterns in existing
text, language model watermarking aims to embed
detectable signatures during generation (Kirchen-
bauer et al., 2023).

Early watermarking methods used syntactic
transformations (Atallah et al., 2002) or machine
translation artifacts (Venugopal et al., 2011), but
with the rise of LLMs, strategies like token-level
manipulation and distribution preservation be-
came prominent. KGW (Kirchenbauer et al., 2023)
introduced watermarking by biasing token selec-
tion with hashed context windows, while methods
like SemStamp (Hou et al., 2023) and PersonaMark
(Zhang et al., 2024) modify sentence-level patterns
while maintaining distribution, though they face
challenges with content that cannot be easily seg-
mented into sentences. These approaches often
rely on hypothesis testing, such as z-tests, to com-
pare observed statistics with expected distributions
under the null hypothesis of unwatermarked text
(Kirchenbauer et al., 2023).

Existing approaches exhibit several limitations.
Most methods compromise generation quality
through direct manipulation of token probabilities
(Kirchenbauer et al., 2023) or syntactic modifica-
tions (Atallah et al., 2002). The challenge of lan-
guage and domain generalization remains largely
unaddressed, with current techniques primarily op-
timized for English text and struggling to handle
multilingual content or specialized domains like
code (Lee et al., 2024). Notably, PersonaMark
(Zhang et al., 2024) represents the only attempt at
personalized watermarking to date, but its reliance
on English-specific syntactic patterns and closed-
source implementation makes its scalability and
cross-lingual capabilities difficult to verify. Fur-
thermore, it lacks critical analysis of performance
scaling with increasing user counts—a crucial con-
sideration for real-world deployment where sys-
tems must support thousands of users while main-
taining detection accuracy. The broader challenge
of enabling robust user-specific attribution while
preserving privacy thus remains fundamentally un-
solved in the field.

2.2 Sparse Autoencoders
Sparse Autoencoders (SAEs) are pre-trained inter-
pretability tools that decompose LLM activations
into human-understandable features (Bricken et al.,
2023). For a given base model M and layer l, an
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Figure 1: An overview of SAEMARK.

SAE processes hidden states ht at position t as:

ft = SAEl(ht) (1)

where ft ∈ Rm is a sparse vector (typically
m ≫ dim(ht)) with <5% active features. The
SAE is trained through two objectives: 1) recon-
struct original activations, and 2) enforce feature
sparsity via L1 regularization:

L = ∥ht − Dec(ft)∥2︸ ︷︷ ︸
Lrec

+λ ∥ft∥1︸ ︷︷ ︸
Lsparse

(2)

This training produces features that correspond
to interpretable concepts (Bricken et al., 2023; Tem-
pleton et al., 2024). For instance, SAEs applied to
Gemma 2B (Team et al., 2024)’s final transformer
layer reveal features for "Python function defini-
tions" and "Chinese proper nouns" (Lieberum et al.,
2024).

Our watermarking leverages three key properties
of pre-trained SAE features. First, layer-specific
patterns capture distinct behaviors from different
model layers. Second, multilingual activation al-
lows the same features to fire for equivalent con-
cepts across languages. Third, sparsity enables
efficient analysis through few active features per
token. These properties support language-agnostic
watermark signatures through feature activation
histograms:

ϕ(y) =
1

|y|
∑
t

ft ⊙mpk (3)

where mpk masks key-specific features deter-
mined by public key pk. The histogram ϕ(y)
serves as the verifiable watermark signature, en-
abling detection through distribution alignment
(Sec 3).

2.3 Task Definition

Personalized watermarking for LLMs establishes a
cryptographic binding between generated text and
user identity through two core mechanisms:

Generation Given a base language model M,
secret key sk ∈ SK, and input prompt x, the wa-
termarking algorithm produces text y such that:

y = Mark(M,x, sk) (4)

where Mark operates through post-processing
or sampling algorithms of M’s outputs, without
modifying M’s parameters or generation rules.

Detection For any text y′ and public key pk ∈
PK, the detection algorithm determines:

Detect(pk,y′) → {0, 1} (5)

where 1 indicates y′ contains a watermark trace-
able to pk, with verification requiring only public
information.

The scheme must satisfy three fundamental prop-
erties. First, key privacy ensures computational
infeasibility to derive sk from pk or watermarked
texts. Second, public verifiability allows anyone
to run Detect without secret data. Third, collusion



resistance prevents combining multiple pk’s to re-
move or forge watermarks.

Our approach implements Mark through rejec-
tion sampling over M’s natural outputs, selecting
candidates whose hidden feature distributions align
with sk-derived targets. The Detect function em-
ploys statistical hypothesis testing on these features
using pk, as formalized in section 3. This design
decouples watermarking from decoding algorithms,
preserving M’s output quality while enabling user-
specific attribution.

3 Methodology

Our approach builds on an observation: LLM out-
puts exhibit distinct patterns in their internal rep-
resentations that can be captured through a fixed
sparse autoencoder (SAE). These patterns, while
preserving the semantic content of the text, provide
a natural basis for embedding detectable signa-
tures without compromising generation quality.

The key insight lies in manipulating the sparse
feature concentration of text, through sampling of
generated outputs, rather than directly modifying
models’ weights or decoding process. We employ
a compact Anchor LLM alongside its pretrained
SAE to extract these sparse features from texts pro-
duced by the target LLM requiring watermarking.
This approach enables watermarking that is both
robust and compatible with black-box LLMs, while
supporting user-specific personalized attribution.

3.1 Sparse Features as Watermark Basis

Given a token sequence T , let at ∈ Rdmodel de-
note the original activation vector at token position
t in a specific layer of the Anchor LLM (where
dmodel = 2048 for Gemma-2B). The SAE with
hidden dimension dsae = 16384 produces sparse
feature distribution:

ϕt = JumpReLU(Weat + be) ∈ Rdsae (6)

where We is the encoder weight matrix and
JumpReLU zeros out all but the top feature ac-
tivations.

After ϕt is calculated, we can obtain the set of in-
dices corresponding to the most significant feature
for each token by applying a masking operation
and finding the argmax:

S = {argmaxi(ϕt ⊙m)i | t = 1, 2, . . . , n} (7)

where m is a mask that excludes background
frequent features (occurring in more than 60% of
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Figure 2: Distribution analysis of FCS. FCS distribu-
tion with density estimation (left) and Q-Q plot (right),
with statistical tests supporting normality.

samples) and i denotes the index of ϕt, ranging
from [0, 16384).

With S, the Feature Concentration Score (FCS)
can be computed as follows:

FCS(T ) =
∑n

t=1

∑
i∈S ϕt,i∑n

t=1 ∥ϕt∥1
(8)

The FCS quantifies how sharply these activations
focus on semantically salient features. More details
about FCS calculation are provided in Appendix C.

Our empirical analysis of FCS distribution on
1000 LLM generated sentences on C4 dataset,
shown in Figure 2, reveals that machine-generated
sequences naturally follow a normal distribution
(validated by D’Agostino’s K² test, p=0.113, and
Kolmogorov-Smirnov test, p=0.730). This well-
behaved statistical property suggests that FCS
varies naturally across different generations while
maintaining consistent distributional characteris-
tics, making FCS an effective measurement for
watermarking through rejection sampling.

Algorithm 1: Watermark Generation
Input: Prompt c, private key kpriv, LLM G, SAE θ,

units M , attempts K, hyperparameters µ, σ
Output: Watermarked text x∗

for attempt← 1 to K do
x∗ ← c // Initialize with prompt
kpub ← Hash(kpriv) // Generate public key

{τi}Mi=1 ← GenerateTargetFCS(kpub, µ, σ,M)
// Target sequence

{γi}Mi=1 ← ∅ // Store achieved FCS
values

for i← 1 to M do
X ← GenerateCandidates(G, x∗, N = 50)
xbest ←
argminx∈X |ComputeFCS(θ(x))− τi|

x∗ ← x∗ ⊕ xbest // Append best
candidate

γi ← ComputeFCS(θ(xbest))
end
if CheckAlignment({τi}, {γi}) then

return x∗ // Return if conditions met
end

end
return x∗ // Return best attempt



3.2 Watermark Generation

Our watermarking process operates on textual units
ui (sentences for natural language, code segments
for programming). Given hyperparameters µ, σ
and private key kpriv, we:

1. Generate public key kpub = Hash(kpriv). 2.
For each unit, generate target FCS τi using kpub as
random seed. 3. Sample N candidates {xj}Nj=1

from LLM G. 4. Select x∗i = argminxj
|γ(xj)−

τi| where γ computes FCS.
After generating M units, verify global align-

ment between target sequence {τi}Mi=1 and ob-
served {γi}Mi=1:

Range Similarity: Rmin <
γmax − γmin

τmax − τmin
< Rmax

Overlap Ratio:
|{i : τi ∈ [γmin, γmax]}|

M
≥ Omin

(9)

where γmax = maxi γi, γmin = mini γi, and
analogously for τ . We set default values for
hyperparameters Rmin = 0.95, Rmax = 1.05,
Omin = 0.95. The process repeats up to K at-
tempts if conditions fail.

Let target FCS τ ∈ [µ − 2σ, µ + 2σ] and N
candidates with FCS values γj ∼ N (µ, σ2). For
tolerance k, the probability of finding at least one
candidate within [(1− k)τ, (1 + k)τ ] satisfies:

P(∃j : |γj − τ | ≤ kτ) ≥ 1− (1− pmin)
N (10)

where pmin = Φ( (1+k)(µ+2σ)−µ
σ )− Φ( (1−k)(µ+2σ)−µ

σ )

is the worst-case success probability.
Consider worst-case τ = µ + 2σ. For a single

candidate:

pmin = P((1− k)τ ≤ γj ≤ (1 + k)τ)

= Φ
(
(1+k)(µ+2σ)−µ

σ

)
− Φ

(
(1−k)(µ+2σ)−µ

σ

)
= Φ(2(1 + k) + kµ/σ)− Φ(2(1− k)− kµ/σ)

where Φ is the standard normal CDF. For N i.i.d.
candidates, probability of at least one success is 1−
(1−pmin)

N . With empirically observed µ = 0.142,
σ = 0.029, and practical parameters k = 0.1 and
N = 50, this gives success probability > 0.99
while using a smaller N = 10 would still yield
> 0.61 success probability.

This bound ensures efficient watermark-
ing—even with tight tolerance k = 0.1, using
N = 50 candidates achieves 99.17% success rate
per unit, while smaller batch sizes like N = 20
still maintain 85.32% success probability.

3.3 Watermark Detection
The detection process mirrors generation but fo-
cuses on statistical validation of FCS patterns.
Given a text x and a set of public keys Kpub, we first
segment the input into domain-appropriate units
and compute the observed FCS sequence {γj} for
each segment. For each candidate key ki ∈ Kpub,
we generate the expected FCS sequence {τj} using
the same process as in watermark generation.

Statistical validation combines sequence align-
ment (using criteria from generation) and signifi-
cance testing. We employ Student’s t-test to verify
correlation between observed and expected FCS
sequences. Under the null hypothesis H0 : β ≤ 0
for regression coefficient β in γj = βτj + ϵ, we
consider a text watermarked if we can reject H0 at
significance level α (typically 0.05) with t > tα/2
and p < α, while simultaneously satisfying the
alignment conditions. This dual validation ensures
robustness against both random matches and tam-
pering attempts.

Algorithm 2: Watermark Detection
Input: Text x, public keys Kpub, SAE θ, significance

level α, hyperparameters µ, σ
Output: Detection result d ∈ Kpub ∪ {∅}
{γj} ← [ComputeFCS(θ(s))∀s ∈

SegmentByDomain(x)]
D ← ∅ // Initialize detection results
foreach ki ∈ Kpub do
{τj} ← GenerateTargetFCS(ki, µ, σ, |γj |) if

CheckAlignment({τj}, {γj}) then
t, p← StudentTTest({γj}, {τj}) if
t > tα/2 ∧ p < α then
D ← D ∪ {(ki, t)}

end
end

end
return argmax(ki,ti)∈D ti if D ̸= ∅ else ∅

4 Experiments

Our experiments aims to address key questions: (1)
How effective and accurate is our method com-
pared to existing methods? (2) How does our per-
sonalized watermark scale with exponentially in-
creasing user count? (3) How robust is our method
against adversarial attacks? (4) How each compo-
nent contributes to the overall performance?

Table 1: Dataset Statistics. Characteristics of the mul-
tilingual benchmarks used in evaluation.

C4 LCSTS MBPP PandaLM
(Raffel et al., 2020) (Hu et al., 2015) (Austin et al., 2021) (Wang et al., 2023)

# Samples 500 500 257† 169
Language English Chinese Python English
Task Type Completion Summarization Code Generation Instruction Following

†From test split of sanitized version of MBPP.



Table 2: Main Results on Text Watermarking Detection. We report detection performance at 1% false positive
rate (FPR). Best results are in bold and second-best are underlined. All metrics are reported as percentages (%).

Method C4 (English, 2020) LCSTS (Chinese, 2015) MBPP (Code, 2021) PandaLM (Instruction, 2023)

Acc.↑ Rec.↑ F1↑ Acc.↑ Rec.↑ F1↑ Acc.↑ Rec.↑ F1↑ Quality↑ Acc.↑ Rec.↑ F1↑

KGW (2023) 99.2 99.6 99.2 99.1 98.8 99.1 65.4 31.9 48.0 41.5 89.9 80.4 88.8
EXP (2022) 99.5 99.6 99.5 99.3 99.4 99.3 57.8 16.7 28.4 23.2 79.3 59.4 74.2
UPV (2023a) 86.0 72.0 83.7 90.5 91.0 90.5 51.6 3.1 6.0 36.0 54.0 8.0 14.8
Unigram (2023) 98.8 98.6 98.8 98.2 97.0 98.2 65.4 31.9 48.0 35.3 53.3 7.2 13.4
DIP (2023) 96.0 92.6 95.9 97.7 96.2 97.7 60.7 22.6 36.5 36.5 81.5 63.8 77.5
Unbiased (2023b) 96.7 94.4 96.6 97.8 96.4 97.8 64.0 29.2 44.8 40.2 74.3 49.3 65.7
SynthID (2024) 98.2 97.2 98.2 97.6 96.2 97.6 62.5 26.1 41.0 36.0 81.2 63.0 77.0
SWEET (2024) 99.6 99.6 99.6 50.0 0.0 0.0 72.4 45.9 62.4 47.2 87.7 76.8 86.2
SAEMARK (OURS) 99.7 99.8 99.7 99.2 99.6 99.2 74.5 50.2 66.3 67.6 86.6 73.9 84.6

4.1 Experimental Setup
Datasets We evaluate on 4 diverse datasets as
shown in Table 1. We select C4 and MBPP as
they are widely adopted benchmarks for watermark-
ing tasks, and include LCSTS as a representative
Chinese dataset to validate multilingual capabili-
ties. Together, these datasets cover both natural
languages (English, Chinese) and programming
language (Python), enabling comprehensive evalu-
ation across different domains.

Metrics We report Accuracy, Recall and F1 val-
ues at 1% False Positive Rate (FPR) for all datasets.
Additionally, we include PandaLM, which is an
instruction following dataset specifically designed
with LLM-as-a-judge to evaluate the quality of gen-
erated content. We use GPT-4o to perform pairwise
comparison on the quality of watermarked outputs
and un-watermarked outputs for all methods and
report as Quality metric in our results.

Baselines We conduct extensive comparisons us-
ing the MarkLLM (Pan et al., 2024) toolkit, evalu-
ating against 8 recent watermarking methods. Due
to space constraints, detailed introduction of each
baseline can be found in Appendix B.

Implementation We use Gemma-2B (Team
et al., 2024) as our Anchor LLM and extract activa-
tions from layer 20, with Gemma Scope (Lieberum
et al., 2024) serving as our SAE configured for
16,384 sparse features. For watermark application,
we employ Qwen-2.5-7B-Instruct (Yang et al.,
2024) as the backbone model. Additional hyperpa-
rameters and implementation details are provided
in Appendix A.

4.2 Multilingual Detection Performance
Table 2 shows the watermark detection perfor-
mance of different methods on 4 datasets, we report

the Accuracy, F1 score, and AUC score given 1%
False Positive Rate (FPR). For PandaLM, we re-
port the percentage of the watermarked outputs
that are not judged as degraded compared to the
un-watermarked outputs by GPT-4o to evaluate the
impact of watermarking on the quality of LLM
generated content.

Our evaluation reveals two critical findings: (1)
SAEMARK consistently achieves superior detec-
tion accuracy while preserving text quality and sup-
porting personalized attribution, and (2) existing
methods exhibit fundamental limitations in code
watermarking that our approach alleviates through
domain-adaptive feature alignment.

As Table 2 demonstrates, SAEMARK estab-
lishes new benchmarks with 99.7% F1 on En-
glish (C4) and 99.2% on Chinese (LCSTS), out-
performing baselines even on competitive fields
where the detection accuracy is close to 100%.
Notably, we surpass SWEET—a specialized code
watermarker—by 3.9% F1 on MBPP despite our
general-purpose design. This cross-domain su-
periority stems from SAE features that capture
language-agnostic semantic patterns rather than
surface-level token distributions.

While other methods struggle with language-
specific performance cliffs, such as SWEET’s 0%
recall on Chinese, our SAEMark achieves balanced
accuracy by using syntax-invariant SAE features.
On the MBPP code generation dataset, where the
average F1 score drops by 51% compared to text
domains due to programming languages’ lower en-
tropy and rigid syntax, SAEMark still excels with
a 66.3% F1 score, significantly outperforming al-
ternatives like KGW at 48.0% and EXP at 28.4%.
This highlights SAEMark’s effectiveness in water-
mark embedding even within the constrained space
of syntactically rigid code.
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For PandaLM dataset, SAEMark shows its
strength by achieving watermark quality score of
67.6. This score reflects SAEMark’s capability to
embed watermarks while preserving the quality of
the original text effectively, suggesting that SAE-
Mark manages to maintain a good balance between
watermark detectability and text quality preserva-
tion. It indicates our approach’s potential in offer-
ing a reliable solution that respects the integrity of
the textual content, making it a promising option
for applications where both watermarking effec-
tiveness and text quality are critical considerations.

4.3 User-Specific Attribution

Real-world AI systems require watermarking
that scales to many users while preserving pri-
vacy—storing user-generated content raises ethical
and regulatory concerns. SAEMARK addresses
this through private-public key binding that enables
attribution without storing sensitive data.

Figure 3 shows SAEMARK maintains >90%
accuracy for English and Chinese with up to 1024
different users, using only 10 generated sentences
per detection. At 8192 users, accuracy remains
practically viable at 75% for English and 65% for
Chinese, outperforming random guessing by four
orders of magnitude.

Unlike systems that store user texts for attri-
bution, SAEMARK relies solely on public keys
derived from private keys for detection. This ap-
proach ensures providers never store original user
content while maintaining attribution capability.

Accuracy degrades gracefully despite exponen-
tially increasing collision risk, thanks to our high-
dimensional feature space (R16384). The 7% ac-
curacy drop per order-of-magnitude user growth
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Figure 4: Comparison of attacks on SAEMark. ROC
curves showing robust performance against three attack
types with varying intensities (5%, 10%, 15%).

stems from widening feature concentration inter-
vals, mitigated through dynamic range and overlap
constraints (which is discussed in subsection 4.5).
Practical deployments can tune detection strict-
ness—requiring 8/10 matching sentences boosts
accuracy to 99% at 1,024 users with minimal false
attributions.

These results position SAEMARK as the first eth-
ical watermarking solution suitable for regulated
environments. By decoupling attribution from con-
tent storage, our method enables responsible au-
diting in public AI systems while respecting user
privacy. We are first to carry out such experiments
and we think this is a field that safe, ethical and
responsible AI systems should take careful consid-
eration about.

4.4 Adversarial Robustness Evaluation

Adversarial attacks pose significant threats to
watermarking systems, and we evaluate SAE-
MARK against three different types of attacks:
word deletion attacks (Deletion), basic synonym
substitution attacks (Synonym), and context-aware
synonym substitution (CTXSynonym), which rep-
resents one of the more sophisticated attacks. Our
evaluation includes various substitution rates for a
comprehensive assessment. These rates allow us to
understand how well our method performs under
differing levels of adversarial pressure.

As shown in Figure 4, our method demonstrates
notable resilience across adversarial conditions.
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Figure 5: Ablation studies on SAEMark. Left: Scaling analysis of watermark accuracy with increasing user count
under different constraint settings. Right: ROC curves for different target FCS distribution parameters (µ, σ). The
default setting [0.13, 0.02] achieves optimal detection performance compared to alternative configurations.

For word deletion attacks, it maintains an AUC
above 0.80 at a 15% deletion rate. In the case of
synonym substitution attacks, our method achieves
an AUC greater than 0.78 at 15% substitution.

Particularly noteworthy is the performance under
context-aware synonym substitution. Our method
achieves AUC of 0.992, 0.976, and 0.953 at 5%,
10%, and 15% substitution, respectively. These
results indicate the robustness of SAE features in
mitigating the impact of highly effective semantic-
preserving edits.

4.5 Ablation Studies

We conduct comprehensive ablation studies val-
idate effectiveness of core components in our
method: (1) the necessity of dynamic range and
overlap constraints for multi-user scaling, and (2)
the impact of FCS distribution parameters on de-
tection performance. Figure 5 illustrates these anal-
yses. Due to space limits, we also perform ablation
studies on background frequent feature masking
but report the results in Appendix D.

The left subplot demonstrates how our con-
straints enable reliable scaling to large user bases.
Removing either dynamic range constraint or over-
lap constraint causes significant accuracy degrada-
tion beyond 1,024 users. Without both mechanisms
("w/o Dynamic Range, Overlap"), the performance
drops significantly to 64.2% at 8,192 users, which
is notably lower than SAEMARK’s accuracy of
88%. Specifically, the accuracy also drops to nearly
80% among 8,192 users, with loosen limits of
Rmin = 0.8, Rmax = 1.2, and Omin = 0.8. This
validates our theoretical analysis that controlled
feature concentration intervals are crucial for main-

taining distinguishable watermarks at scale.
The right subplot examines detection sensitivity

to FCS distribution parameters. Our default setting
achieves optimal ROC performance, while alterna-
tive configurations show marked degradation. No-
tably, increasing the mean and variance [µ = 0.30,
σ = 0.06] leads to substantial performance loss,
likely due to feature saturation in higher concen-
tration regions. Conversely, an overly restrictive
range [µ = 0.05, σ = 0.02] limits the available
feature space, reducing watermark capacity.

These results empirically validate two fundamen-
tal aspects of SAEMARK: (1) Dynamic range and
overlap constraints are essential mechanisms for
scalability over large amount of users, and (2) The
theoretically derived optimal FCS distribution in-
deed maximizes detection performance, confirming
our mathematical analysis.

5 Conclusion

SAEMARK introduces a fundamental shift in AI
generated content detection through manipulating
sparse autoencoder features. Our method achieves
consistently high detection accuracy across lan-
guages and code while preserving text quality,
demonstrating that model interpretability tools can
be repurposed for ethical AI systems. By mapping
user keys to activation patterns rather than surface
features, we enable scalable attribution without con-
tent storage—supporting identifying thousands of
users with high accuracy using a few sentences.
This bridges the gap between technical watermark-
ing and practical deployment constraints, offering a
privacy-preserving solution that respects linguistic
diversity while meeting regulatory requirements.



Limitations

We also found some limitations with our current ap-
proach. First, the method’s effectiveness depends
on SAE feature quality. But be noted that this does
not affect the applicability of our algorithm on the
base LLMs, since we only apply SAEs on the An-
chor LLM and require only access to the output
texts from the base LLM, and we have a lot of pre-
trained SAEs from the open-source community that
exhibit strong performance in interpreting model
outputs. Second, detection watermarks effectively
requires open-ended generation tasks, making at-
tribution challenging for very short outputs like
multiple-choice problems that only contain option
keys. However this is a universal challenge for
all watermarking algorithms, since short texts in-
evitably contains less information and less space to
inject additional signatures.

These constraints reflect tradeoffs in privacy-
preserving watermarking. Future work could ex-
plore dynamic candidate pruning to address these
limitations. Nevertheless, our experiments across
4 benchmarks suggest these constraints pose man-
ageable practical impacts compared to the system’s
ethical advantages.
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A Experimental Setup and
Hyperparameter Details

This appendix provides a comprehensive descrip-
tion of the experimental setup, encompassing the
hyperparameters and software configurations em-
ployed in this study.

A.1 Hyperparameters (SAEMARK)
The following hyperparameters were used for the
SAEMARK:

• Candidate Number (N): 50. This parameter
denotes the number of candidate sequences
sampled from the LLM.

• Unit Number (M): 10. This specifies the num-
ber of discrete generation units produced by
the model per attempt.

• Attempt Number (K): 15. This metric repre-
sents the maximum times that the algorithm
attempts to get an alignment.

A.2 Model Configuration
The section outlines the hyperparameter by the
model during generation.

• Base Model: Qwen2.5-7B-Instruct. This
is the model on which the algorithm operates.

• Sampling: This algorithm enables the model
to generate various candidates, for which the
parameter do_sample is set to True.

• Temperature: This controls the randomness
of the predictions by scaling the logits. The
metric is set to 0.7.

• Max New Tokens: This specifies the maxi-
mum number of new tokens that the model
can generate, which is 20 during generation.

B Introduction to baselines

KGW (Kirchenbauer et al., 2023) The Key-
based Green-list Watermarking (KGW) algorithm
is a modern approach for watermarking text gener-
ated by LLMs. This method builds upon the work
of (Kirchenbauer et al., 2023), who introduced a
watermarking scheme that divides the token set
into ’red’ and ’green’ lists based on a secret key
and previously generated tokens.

Key features of KGW include the bifurcation
of the token set into ’red’ and ’green’ lists, the

use of a random seed dependent on a secret key
and hash of prior tokens, reweighting of token log-
probabilities to favor green tokens, and the intro-
duction of permutation-based reweight strategies.
These elements work in concert to create an effec-
tive watermarking system that balances detectabil-
ity with output quality preservation.

The approach offers a balance between water-
mark embedding and preservation of text qual-
ity, addressing challenges faced by previous wa-
termarking methods.

Unigram (Zhao et al., 2023) The Unigram-
Watermark and KGW algorithms, both designed
for watermarking LLM-generated text, have dis-
tinct characteristics. Unigram-Watermark operates
on individual tokens, using a consistent green list
for each new token, while KGW employs a K-
gram approach with varying green lists. Unigram-
Watermark’s simplicity offers enhanced robustness
against editing attacks and requires minimal im-
plementation overhead. This streamlined approach
leads to potential efficiency gains in both water-
mark embedding and detection processes, setting
it apart from the more complex K-gram nature of
KGW.

SWEET (Lee et al., 2024) The Segment-Wise
Entropy-based Embedding Technique (SWEET)
is an innovative approach to watermarking code
generated by large language models. SWEET ad-
dresses the challenge of maintaining code func-
tionality while embedding detectable watermarks.
It operates by selectively applying watermarking
to high-entropy segments of the generated code,
thereby preserving the overall code quality. This
method significantly improves code quality preser-
vation while outperforming baseline methods in de-
tecting machine-generated code. SWEET achieves
this by removing low-entropy segments during both
the generation and detection of watermarks, effec-
tively balancing the trade-off between detection
capability and code quality degradation.

UPV (Liu et al., 2023a) The key feature of UPV
is its use of separate neural networks for watermark
generation and detection, addressing the limitation
of shared key usage in previous methods. This
separation allows for public verification without
compromising the watermark’s security. UPV em-
ploys shared token embedding parameters between
the generation and detection networks, enabling
efficient and accurate watermark detection. The



algorithm embeds small watermark signals into the
LLM’s logits during generation, similar to existing
methods, but uniquely conceals the watermarking
details in the detection process. This approach
ensures high detection accuracy while maintain-
ing computational efficiency, and significantly in-
creases the complexity of forging the watermark,
thus enhancing its security in public detection sce-
narios.

DIP (Wu et al., 2023) The Distribution-
Preserving Watermarking (DIP) algorithm repre-
sents a significant advancement in watermarking
techniques for large language models (LLMs).
DIP’s innovation is its ability to maintain the orig-
inal token distribution of the LLM while embed-
ding a watermark, addressing a critical limitation
of previous methods. This distribution-preserving
property is achieved through a novel permutation-
based approach that reweights token probabilities
without altering the overall distribution. DIP offers
provable guarantees on distribution preservation,
detectability, and resilience against text modifica-
tions. The algorithm employs a texture key gener-
ation mechanism that considers multiple previous
tokens, enhancing its robustness. Notably, DIP
maintains text quality comparable to the original
LLM output, owing to its distribution-preserving
nature.

Unbiased (Hu et al., 2023b) Unbiased water-
marking and DIP watermarking are closely related
concepts in the field of text watermarking for large
language models (LLMs). Both approaches aim
to embed watermarks while maintaining the orig-
inal distribution of the LLM’s output. The key
distinction lies in their theoretical foundations and
implementation. Unbiased watermarking ensures
that the expectation of the watermarked distribu-
tion matches the original distribution, while DIP
watermarking guarantees that the watermarked dis-
tribution is identical to the original for every in-
put. In essence, unbiased watermarking can be
viewed as a relaxed version of DIP watermarking.
While unbiased watermarking allows for small de-
viations in individual instances, DIP watermarking
maintains strict distribution preservation. This re-
lationship highlights a spectrum of watermarking
techniques, where unbiased methods offer a bal-
ance between practicality and distribution preserva-
tion, while DIP methods provide stronger theoreti-
cal guarantees at potentially higher computational
costs.

SynthID (Dathathri et al., 2024) SynthID is an
advanced watermarking method for large language
models (LLMs) that builds upon previous work in
generative text watermarking. The key innovation
of SynthID lies in its use of Tournament sampling,
which provides superior detectability compared to
existing methods. This approach offers rigorous
and customizable non-distortion properties, allow-
ing for text quality preservation while maintaining
effective watermarking. SynthID has been empir-
ically validated, including through real user feed-
back from millions of chatbot interactions. Notably,
the method introduces an algorithm to combine gen-
erative watermarking with speculative sampling,
enabling efficient deployment in high-performance,
large-scale production LLMs.

EXP (Aaronson and Kirchner, 2022) EXP em-
ploys a pseudorandom function fs() with a secret
seed s known only to the model provider. Given
previous tokens w1, ..., wt−1 and GPT’s probability
distribution p1, ..., pK for the next token wt, the al-
gorithm generates real values ri ∈ [0, 1] using fs().
EXP then selects the token i that maximizes r1/pii .
To detect the watermark, it calculates

∑T
t=1 ln

1
1−r′t

and compares it to a threshold. The scheme pre-
serves the original token distribution while embed-
ding a detectable watermark, with theoretical analy-
sis showing distinct expected values for normal and
watermarked text. The number of tokens required
for reliable detection is O( 1

α2 log
1
δ ), where α is the

average entropy per token and δ is the acceptable
misclassification probability.

C Details of FCS Generation

This section elaborates on the methodology behind
the generation of the Feature Concentration Score
(FCS). The process is illustrated in Figure Figure 6,
which outlines four key steps.

Extracting SAE Features for Each Token
Given a token sequence T , we utilize SAE to derive
an activation vector ϕt for each token position t.
This vector, ϕt, embodies the representation of the
token at position t with a dimensionality of 16,384.

Selecting the Most Significant Feature For ev-
ery activation vector ϕt, our objective is to identify
the most significant feature, which serves as a de-
scriptor for the token at position t. This is achieved
through applying the function argmaxi(ϕt ⊙m)i,
where m is a mask. The output of this function
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Figure 6: An example of Feature Concentration Score (FCS) calculation process.

Algorithm 3: ComputeFCS(θ(T ))
Input: Token sequence T , SAE θ for the entire

sequence
Output: Feature Concentration Score (FCS)
Φ← θ(T ), yielding activation vectors ϕ1, ϕ2, ..., ϕn

for each token position in T ;
indices← [];
for t = 1 to n do

ϕt is the activation vector for token at position t;
index← argmaxi(ϕt ⊙m)i;
Append index to indices;

end
featureSet← set(indices), removing duplicates;
featureSum← 0;
totalNorm← 0;
for t = 1 to n do

tokenSignificance← 0;
foreach i ∈ featureSet do

tokenSignificance←
tokenSignificance+ ϕt,i;

end
featureSum←
featureSum+ tokenSignificance;

totalNorm← totalNorm+ ||ϕt||1;
// Accumulate significant features and

norms
end
FCS ← featureSum

totalNorm
;

// Calculate final FCS
return FCS;

yields the indices corresponding to the most promi-
nent feature, denoted as "SAE Feature Indices" in
Figure Figure 6.

Aggregating Most Significant Features As de-
picted in Figure Figure 6, each token’s position
t has its most significant feature. However, when
summarizing the critical features of the entire se-
quence T , redundancies may occur. To address this,
we employ a set operation to eliminate duplicate
entries among the significant features, resulting in
a unique collection termed as "Feature Set S".

Calculating Feature Concentration Score
Upon obtaining the Feature Set S, we aim to
quantify how these significant features contribute
to the overall sequence T concerning SAE feature
values. For each ϕt, we compute the sum of
ϕt,i, where i represents the index belonging to S.
This aggregate score measures the contribution
of significant features to individual tokens within
T . Accumulating this metric across all tokens
provides a global measure for the sequence.

To evaluate the total activation value of SAE fea-
tures over the sequence T , we apply the L1 norm
to each ϕt, obtaining the sum of absolute values
for each token’s feature vector. Summing these
across all tokens yields the total SAE value for T .
The Feature Concentration Score (FCS) is defined
as the ratio of the accumulated contributions of
significant features to the total SAE feature values.

The detailed steps for computing the FCS are



outlined in algorithm 3.
This score effectively captures the concentration

of key features within a token sequence and is use-
ful for applications in watermark embedding.

D Additional Experimental Results

D.1 Adversarial Robustness Evaluation

Word Deletion Attack In the main text, we
conducted experiments using the "maintain con-
tent structure" version of the word deletion at-
tack. However, the original word deletion attack
involves splitting a paragraph and randomly remov-
ing words, which disrupts the structure that water-
marking methods rely on, making it harder for the
detection system to identify the watermark. To ad-
dress this issue, we modified the attack to preserve
structure while still performing word deletions. By
maintaining the integrity of the structure, the attack
bypasses watermark detection more effectively.

In our experimental results, we compare two
versions of the word deletion attack. The "keep
structure" method, represented in a darker color,
shows more robust performance with higher AUC
values (0.949 at ϵ = 0.05 and 0.858 at ϵ = 0.1). In
contrast, the "not keep structure" method, shown
in a lighter color, demonstrates a decline in per-
formance, with AUC values dropping to 0.901 at
ϵ = 0.05 and 0.825 at ϵ = 0.1. These results in-
dicate that preserving the content structure during
the attack strengthens the watermark’s resistance,
whereas random word deletions that disrupt the
structure reduce detection accuracy.

As shown in the Figure 7, the "keep struc-
ture" method outperforms the "not keep structure"
method in terms of AUC, demonstrating its effec-
tiveness in watermark resistance.

Basic Synonym Substitution Attack Our study
also examines "keeping structure" versus "not keep-
ing structure" approaches in the context of basic
synonym substitution attacks, which are less likely
to disrupt the content’s structural integrity.

Figure 8 shows ROC curves comparing model
performance under different conditions, with the
original non-structure-preserving method in lighter
shades and the modified structure-preserving
method in darker hues. The analysis reveals min-
imal differences in AUC values between the two,
indicating similar model resilience to both forms of
synonym substitution. Notably, the model demon-
strates performance robustness that exceeds that
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Figure 7: Word Deletion on SAEMark ROC curves
highlighting the performance difference between "keep
structure" and "not keep structure" methods under word
deletion attacks with varying intensities (5%, 10%).
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Figure 8: Basic Synonym Substitution on SAEMark
ROC curves comparing "keep structure" and "not keep
structure" methods under basic synonym substitution
attacks at different intensities (5%, 10%).

observed in deletion attack scenarios, reflected by
AUC scores that remain close to the baseline.

Context-aware Synonym Substitution Attack
Due to our algorithm’s prominent performance
against context-aware synonym attack. More in-
tensities (20%, 30%, 40%, 50%) are carried upon
these kinds of attacking.

The results of the context-aware watermarking
method, shown in Figure 9 tested under this at-
tack, demonstrate substantial robustness. Even
with high substitution ratios—up to 50% token re-
placement—the AUC remains relatively high, high-
lighting the method’s ability to maintain detection
performance under significant adversarial pressure.
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Figure 9: Context-Aware Synonym Substitution on
SAEMark ROC curves comparing "keep structure" and
"not keep structure" methods under basic synonym sub-
stitution attacks at different intensities (5%, 10%).

The ROC curves further corroborate this, show-
ing that the true positive rate remains consistently
high across varying false positive levels, even as
attack intensity increases. This demonstrates a well-
balanced trade-off between true and false positives,
ensuring reliable detection without excessive false
alarms. These findings affirm that the watermark-
ing method is both effective and robust, offering re-
liable protection against sophisticated attacks while
maintaining strong detection accuracy.

D.2 Ablation Study on Background Frequent
Features

In section 3, we utilize ϕt ⊙m, where m is a mask
that excludes background frequent features.

In this section, we generate the Feature Concen-
tration Score (FCS) without using m and conduct
ROC experiments for further analysis. To evaluate
the impact of background frequent feature mask-
ing on our model’s performance, we performed an
ablation study.

With background frequent feature masking in
place, the model achieved an AUC of almost 1.0.
Upon removing this masking, the AUC dropped
to 0.85, as illustrated in Figure 10. This signifi-
cant decrease demonstrates that background fre-
quent feature masking plays a crucial role in our
algorithm, emphasizing its importance for optimal
performance.

D.3 Use Of AI Assistants

We employed AI assistants for two tasks: (1) gener-
ating routine code implementations and boilerplate
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Figure 10: Ablation on Background Frequent Fea-
ture Masking The ROC curve compares the perfor-
mance with and without background frequent feature
masking.

functions, and (2) performing grammatical review
and sentence-level editing of the manuscript. All
AI-generated content underwent thorough manual
review. The core research methodology, findings,
and analysis remain entirely our own work.
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