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Abstract
Large Language Models excel at code genera-
tion yet struggle with complex programming tasks
that demand sophisticated reasoning. To bridge
this gap, traditional process supervision relies
on learned reward models requiring costly train-
ing data and suffering from reward misalignment,
while outcome supervision fails for complex tasks
needing coordinated intermediate steps. We in-
troduce Outcome Refining Process Supervision,
which unifies process and outcome supervision
by leveraging executable verification: a tree-
structured search framework generates strategic
alternatives, profiles execution metrics, and scores
candidates via self-critique mechanisms that in-
tegrate runtime feedback with reasoning. Exper-
iments across 5 models and 3 benchmarks show
consistent gains, with 26.9% higher correctness
and 42.2% improved code efficiency. The results
demonstrate that ORPS enables LLMs to over-
come local optima in code generation, suggest-
ing a promising direction for combining verifiable
outcomes with structured reasoning to tackle com-
plex challenges.

1. Introduction
Large Language Models (LLMs) have revolutionized code
generation through their ability to synthesize programs from
natural language specifications (Brown et al., 2020; Guo
et al., 2024). However, complex programming tasks requir-
ing multi-step algorithmic reasoning—such as implement-
ing dynamic programming solutions or optimizing paral-
lel computation patterns—remain challenging (Jiang et al.,
2024b; Jimenez et al., 2023). These limitations persist
even in state-of-the-art models (OpenAI, 2023; Touvron
et al., 2023a), revealing a critical gap in current supervision
paradigms.
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Figure 1: Comparison of outcome and process supervision.

As shown in Figure 1, traditional approaches follow two
main paradigms: outcome supervision, which evaluates
only final outcome quality (Chen et al., 2021b), and pro-
cess supervision, which guides intermediate steps using
learned Process Reward Models (PRMs) with search algo-
rithms (Lightman et al., 2023). While PRMs have shown
success in mathematical reasoning (Wang et al., 2024c;
Chen et al., 2024a), their application to code generation
faces fundamental challenges: (1) PRMs require expensive
human annotations or distillations of other models on inter-
mediate steps to train (Wang et al., 2024b); (2) Learned re-
wards suffer from hallucination (misjudging invalid steps as
correct) (Huang et al., 2023; Stechly et al., 2024) and reward
hacking (LLM exploiting superficial patterns to maximize
scores) (Skalse et al., 2022); (3) No code-specific PRMs
exist to date –existing implementations directly adapt math-
focused PRMs might mismatch programming’s structured
logic and data distribution.

Code generation presents a unique opportunity through con-
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crete, verifiable signals. Unlike other domains where in-
termediate steps may be difficult to verify, code can be
executed throughout development, providing objective feed-
back about both theoretical correctness and practical perfor-
mance (Zhang et al., 2023; Shinn et al., 2024). Yet existing
approaches using execution feedback (Shinn et al., 2024;
Zhong et al., 2024) focus primarily on local improvements
and debugging, missing opportunities for exploring funda-
mentally different algorithmic strategies.

We propose Outcome-Refining Process Supervision,
a novel paradigm that treats the reasoning on refine-
ment of outcomes itself as the process to be supervised.
This approach differs fundamentally from existing self-
improvement methods that focus on iterative refinement
with execution feedback. Through a tree-structured explo-
ration space, our framework maintains multiple reasoning
trajectories simultaneously, enabling models to discover
and refine diverse solution strategies. This structure allows
models to explore different algorithmic approaches when
initial attempts prove suboptimal (e.g., switching from brute-
force to divide-and-conquer approaches), rather than being
trapped in local optima (e.g., a brute-force solution that
passes the test but is inefficient).

Our key insight is that execution feedback can serve as ob-
jective anchors for evaluating reasoning quality, eliminating
the need for specially trained PRMs. This creates a natural
synergy: execution outcomes (pass/fail) and performance
metrics (runtime/memory) in conjunction with self-critique
mechanisms ground the process rewards without human an-
notation. Tree-structured search maintains diverse solution
trajectories, enabling recovery from early missteps through
alternative approaches. Reasoning chains and code imple-
mentations refine each other—execution failures prompt
theoretical re-analysis, while improved algorithms lead to
better implementations.

To our knowledge, ORPS is the first process supervision
framework specifically designed for code generation, requir-
ing no PRM training while outperforming existing math-
derived approaches. Experiments across 5 models and 3
datasets reveal:

• Reasoning Over Model Scale: Providing sufficient rea-
soning space is more crucial than model size for complex
programming tasks - even smaller models like Qwen-7B
achieve high success rates (80% Pass@1) when given
room to explore and refine multiple solution strategies,
outperforming its 14B counterpart

• Learned PRM Elimination: Combining execution feed-
back with self-critique mechanisms creates a more re-
liable verification system than learned reward models,
without requiring expensive training data

• Scalable improvement: Our approach shows consis-

tent improvements in both success rates and solution
efficiency compared to existing methods, particularly on
complex tasks where current approaches struggle

Our key contributions include:

• We propose ORPS: a novel framework that unifies out-
come and process supervision to tackle complex code
problems.

• We found that eliminating specially trained PRMs with
hybrid process rewards significantly enhances model’s
reasoning ability to solve complex coding problems.

• ORPS achieves an average Pass@1 improvement of
26.9% across three datasets and five models, while re-
ducing running time by 42.2% on average.

2. Related Work
2.1. Outcome Supervision vs Process Supervision

Outcome Supervision in language models traditionally
evaluates and optimizes LLM outputs through three primary
paradigms: (1) Open-ended generation tasks (e.g. instruc-
tion following) assessed via text similarity metrics with
reference answers (Zhang et al., 2019) or LLM-as-a-judge
scoring (Zheng et al., 2023; Wang et al., 2023c; Yu et al.,
2024a); (2) Constrained-output tasks (multiple-choice, math
problems) judged by exact answer matching (Brown et al.,
2020; Hendrycks et al., 2020) of answer keys or solutions;
and (3) Code generation where correctness depends on test
case execution with generated programs (Chen et al., 2021b;
Austin et al., 2021). These outcomes are then used to cu-
rate the data (e.g., selecting higher-quality conversations or
code solutions) for further training of the model (Liu et al.,
2023b). Such approaches share a critical limitation: they
ignore the reasoning process that produced the output (Ue-
sato et al., 2022). This proves particularly problematic for
complex tasks where optimal solutions require coordinated
intermediate steps (Lightman et al., 2023).

Process Supervision addresses this gap by optimizing in-
termediate reasoning trajectories through specially trained
Process Reward Models (PRMs) that score each intermedi-
ate step (Uesato et al., 2022; Lightman et al., 2023). PRMs
have proven particularly effective in domains requiring com-
plex reasoning, such as math problems, where they guide
search or sampling algorithms toward better reasoning tra-
jectories and solutions (Wang et al., 2024c; Chen et al.,
2024a; Wang et al., 2024b). While outcome supervision
gives Routcome(y) = 1[correct], process supervision gives
step-wise reward signals Rprocess =

∑T
t=1 PRM(st|s1:t−1).

This approach have been predoominantly used in math rea-
soning tasks(Luo et al., 2024; Jiang et al., 2024a), but also
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Figure 2: Outcome-Refining Process Supervision framework overview. A language model serves as both programmer and
critic in a step-by-step reasoning process. Through beam search, the framework maintains multiple solution trajectories,
where each state contains reasoning chains, code implementations, and step reward.

with limitations: 1) The requirement for dense human anno-
tations to train reliable PRMs makes the approach expensive
and time-consuming (Lightman et al., 2023). 2) The gener-
alization capability of PRMs is often limited, as reasoning
patterns can vary significantly across different tasks and
domains. 3) When serving as judges, LLMs may produce
unreliable evaluations due to hallucination (Hu et al., 2024;
Li et al., 2024), particularly for complex tasks (Thakur et al.,
2024). Recent studies show that LLMs cannot reliably self-
correct (Huang et al., 2023) or self-validate without external
verification (Stechly et al., 2024). These limitations mo-
tivate our approach of grounding process supervision in
concrete, verifiable signals rather than learned judgments.

2.2. Execution-Driven Code Generation

Code generation is typically formulated as a sequence-to-
sequence problem: given input specification x (including
natural language description and test cases), generate a pro-
gram y that correctly implements the required functional-
ity (Jiang et al., 2024b). While most existing approaches
treat this as a single-step generation process (Chen et al.,
2021a), recent work has explored using execution feedback
to guide code generation (Zhong et al., 2024; Zhang et al.,
2023) or use CoT prompting to improve correctness (Shinn
et al., 2024).

Although these execution-guided approaches show promise,
our experiments indicate they are insufficient for complex
programming tasks that require deeper reasoning. While
execution feedback is easy to measure, it alone provides
little guidance on how to improve solutions that fail or how
to make working solutions more efficient. More importantly,

it offers no feedback during the intermediate stages of de-
velopment, when early course corrections could prevent
cascading errors.

Consider implementing an efficient sorting algorithm: a
model might write code that passes all test cases but uses
an inefficient O(n2) approach. Outcome supervision would
mark this as a success, missing the opportunity to guide the
model toward a more optimal O(n log n) solution. Simi-
larly, if the code fails, a sparse ”fail” signal provides no in-
sight into whether the error lies in the algorithmic approach,
the implementation details, or edge case handling. These
limitations of both process and outcome supervision high-
light the need to rethink how to supervise the development
of complex programs, where both theoretical understanding
and practical implementation must evolve together.

3. Methodology
We propose a framework that unifies process supervision
with outcome supervision by combing reasoning, code im-
plementation, and execution verification into a single tree-
structured search process.

When tackling coding tasks, particularly complex ones, it
is challenging for a model to generate a fully correct so-
lution on the first attempt. Instead, LLMs often produce
imperfect yet heuristically valuable code, requiring iterative
self-correction to eventually arrive at a correct implementa-
tion. Each iteration of code refinement can be considered a
step in the problem-solving process.

As formalized in Algorithm 1 and illustrated in Figure 2,
at step t, the node in a given search beam represents a
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Algorithm 1 Outcome-Refining Process Supervision
Input: Problem x, Unit Tests U , ModelM, Beam size K, Steps T ,

Candidates N , Process Reward Weight α, Outcome Reward Weight β
Initialize beam0 ← {(x, ∅)} {Start with problem description}
for step t = 1 to T do
paths← ∅ {Initialize reasoning paths}
for state s in beamt−1 do
chain← s.reasoning chain {Copy current reasoning chain}
candidates←Mreason(x, chain, N) {Generate N pairs}
for candidate in candidates do
reasoning, code← Extract from candidate
newchain← chain⊕ reasoning⊕ code
feedback, outcome rew← execute and profile(code, U )
newchain← newchain⊕ feedback⊕ outcome rew
crit, process rew←Mcritic(newchain, code, feedback)
newchain← newchain⊕ crit⊕ process rew
step score← α× process rew+ β × outcome rew
paths← paths ∪ {(newchain, step score)}

end for
end for
beamt ← Select Top-K paths with highest step score
if Any path in beamt is complete then

break
end if

end for
Return: Best reasoning chain from beamT

state st = (Rt, Ct, Ft, ωt,Kt, ρt), where Rt denotes the
current reasoning chain, Ct the code implementation, Ft the
execution feedback, ωt the outcome reward score, Kt the
self-critic reasoning and ρt the process reward score.

The search progresses through three phases :

1. Candidate Generation. The LLM is leveraged to do rea-
soning on how to refine or alternative strategies and then
attempt to generate corresponding code implementations.

2. Execution & Profiling. Each candidate code is executed
and profiled on unit tests, to measure key performance
metrics, such as correctness, efficiency, and code quality.

3. Self-Critic & Process Rewarding. The LLM is
prompted to generate a texual self-critic considering rea-
soning chain and execution metrics, then gives a numeri-
cal process reward score which is used to guide searching.

Unlike linear CoT approaches that commit to a single tra-
jectory, this tree structure enables parallel exploration of
divergent strategies—for instance, maintaining both greedy
and dynamic programming approaches for optimization
problems until empirical feedback identifies the superior
solution.

3.1. Candidate Generation

The candidate generation phase expands the search tree
by producing diverse refinements. For each node st−1 =
(Rt−1, Ct−1, Ft−1, ωt−1,Kt−1, ρt−1), the LLM generates
N successor candidates:

{(r(j)t , c
(j)
t )}Nj=1 = M(Rt−1, Ct−1, Ft−1),

where r
(j)
t represents incremental reasoning updates (e.g.,

‘Adjust loop termination to prevent off-by-one errors’) or
strategic pivots (e.g., ‘Replace recursion with iteration to
avoid stack overflow’). This dual-generation mechanism
ensures algorithmic diversity—maintaining competing ap-
proaches until empirical feedback resolves ambiguities.

3.2. Execution & Profiling Outcome Rewards

We execute the model-generated code {c(j)t }Nj=1 on a set of
predefined Unit tests U and execute them to obtain results.
U may be either generated by the LLM itself based on the
problem or provided by the dataset. We will discuss the
results under different scenarios in subsection 4.1.

The outcome reward ω
(j)
t combines dynamic analysis (Ball,

1999) and static analysis (Nielson et al., 1999) metrics into
a unified score, grounding solution quality in both runtime
behavior and structural properties. We compute:

ω
(j)
t =

M∑
k=1

βk · normalize(m(j)
k ),

We have correctness, execution time, CPU instruction count,
page faults as dynamic analysis metrics and code length,
AST node count, cyclomatic complexity and cognitive com-
plexity as static analysis metrics. Due to space limitations,
we put detailed introduction to each metric in Table 5.

This framework rewards solutions that balance functional
correctness with comprehensive aspects—a brute-force im-
plementation passing all tests would score highly in cor-
rectness but poorly in complexity metrics, incentivizing
refinement toward optimal algorithms.

3.3. Self-Critic & Process Rewarding

The same model M serves dual roles: generating reasoning
along with solution candidates, and judging their viability.
After executing c

(j)
t to obtain F

(j)
t , the model produces a

texual critique k
(j)
t and a numerical process reward ρ

(j)
t :

(k
(j)
t , ρ

(j)
t ) = M(Rt−1 ⊕ r

(j)
t , Ct−1 ⊕ c

(j)
t , F

(j)
t ).

The process reward grounds subjective evaluation of the
reasoning process by combining objective execution met-
rics. This hybrid scoring prevents reward hacking—a model
cannot inflate rewards without corresponding improvements
in verifiable execution outcomes. Candidates with high ρ
but low ω signal outcome-process mismatches, which is a
critical failure mode in conventional process supervision.
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3.4. Unifying Process and Outcome Supervision

The beam search mechanism proceeds with Top-K succes-
sor states using a weighted step score: qt = αρt + βωt.
Where α + β = 1 governs the trade-off between theoret-
ical soundness (ρt) and empirical effectiveness (ωt). The
framework balances functional correctness while preserving
promising reasoning trajectories.

This formulation generalizes conventional supervision
paradigms. When β = 0, the framework reduces to pure
process supervision akin to mathematical reasoning ap-
proaches that prioritize stepwise correctness over answers
during reasoning. Conversely, α = 0 recovers outcome
supervision’s focus on final code quality, similar to Best-of-
N sampling but on a tree. Our unified perspective reveals
these as endpoints on a continuum of supervision strate-
gies, with the proposed α/β balance enabling simultaneous
optimization of reasoning and outcome solution quality.

The synergy emerges through bidirectional feedback: exe-
cution outcomes ground reasoning process by identifying
discrepancies between intended and actual behavior (e.g.,
test failures revealing flawed base cases in recursive algo-
rithms), while process rewards guide exploration toward
algorithmically superior implementations (e.g., recogniz-
ing that memoization could transform an O(2n) brute-force
solution into an O(n) dynamic programming approach).

4. Experiments
Our experimental evaluation aims to address three key ques-
tions: (1) How effective is our framework compared to
existing approaches? (2) How does each component of
our framework contribute to the overall performance? (3)
What insights can we gain about the relationship between
reasoning quality and code generation?

Table 1: Dataset Statistics. Characteristics of the program-
ming benchmarks used in evaluation.

LBPP HumanEval MBPP
(Matton et al., 2024) (Chen et al., 2021b) (Austin et al., 2021)

# Test Problems 162 164 257†

# Unit Tests 5.1 6.5 3.0
Solution Length§ 627 / 3039 169 / 622 130 / 589
Contamination New Dataset 18.9%‡ 20.8%‡

Difficulty Competitive
Programming

Basic
Functions

Basic
Functions

Task Type Algorithms Func. Completion Basic Prog.

†From sanitized version; ‡Contamination results reported from Riddell et al. (2024);§Average/maximum characters in solution code.

4.1. Experimental Setup

Datasets. We evaluate on 3 programming benchmarks as
shown in Table 1. LBPP is a recent complex programming
dataset manually curated by human experts with competi-
tive programming experience. HumanEval and MBPP are
popular code generation benchmarks but could be trivial for
current LLMs (Matton et al., 2024). Moreover, a significant
proportion of the data is leaked in multiple pre-training cor-
pora (Riddell et al., 2024). To ensure reproducibility, we
report our detailed hyperparameters in Appendix A, we
also open-source all our code and scripts.

Unit Tests. Our framework utilizes unit tests to verify and
profile code solutions. We use LLM to generate these unit
tests, which are then employed in computing the outcome re-
ward ω

(j)
t . However, self-generated unit tests do not always

effectively assess code quality. Consequently, some prior
works (Zhong et al., 2024) directly utilize dataset-provided
unit tests. To facilitate a fair comparison with related ap-
proaches, we also consider using unit tests provided by
datasets. In Table 2, methods using unit tests from datasets
are denoted by (w/ T).

Baselines. We compare several strong baselines for code
generation. For outcome supervision, Reflexion (Shinn
et al., 2024) is a recent self-improvement approach
that utilizes execution results to refine generated code.
LDB (Zhong et al., 2024) extends this by incorporating de-
bugger outputs, and intermediate variable values for iterative
solution refinement. For test-time scaling, we implement
Best-of-N sampling, which generates multiple solutions and
selects the best one based on test outcomes. Since no exist-
ing process supervision methods have been designed specifi-
cally for code generation, we adapt a similar approach from
mathematical reasoning (Luo et al., 2024) in comparison,
which we include in our ablation studies.

4.2. Main Results

Table 2 shows the comparative results of our method and
baselines, Figure 3 provides detailed multi-dimensional
profiling of the performance of generated solutions with
different methods.

Our results indicate significant improvements in both cor-
rectness and code quality metrics, especially on harder
benchmarks. Even a smaller model (Qwen 7B), when paired
with our method, could surpass its larger variant (Qwen 14B)
without our method, suggesting that providing sufficient
reasoning space can be more effective than solely scaling
model parameters - which is significantly more computa-
tionally expensive. This finding has important implications
for practical applications where computational resources are
limited.

When compared to other execution-feedback and outcome
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Table 2: Main Results on Code Generation Benchmarks. Pass@1: solutions passing all test cases. Tests: average test
cases passed. Valid: solutions that compile and execute. Time: relative execution time, compared to the standard solution.
Best results are in bold and second-best are underlined, every metric is in percentage.

Model/Method LBPP (2024) HumanEval (2021b) MBPP (2021)
Pass@1↑ Tests↑ Valid↑ Time↓ Pass@1↑ Tests↑ Valid↑ Time↓ Pass@1↑ Tests↑ Valid↑ Time↓

Llama-3.1-8B-Instruct (2024)
CoT 30.9 44.3 63.0 176.8 50.0 68.4 82.9 98.1 58.0 64.9 72.4 91.9
Reflexion 34.0 49.3 67.3 148.5 54.9 71.1 83.5 107.5 58.8 65.0 71.2 88.6
LDB (w/ T) 25.9 39.8 58.0 252.2 54.3 62.3 66.5 127.1 43.6 47.1 49.4 170.7
BoN 46.9 64.7 84.6 107.6 71.3 84.7 93.3 77.3 73.5 79.9 86.4 72.1
ORPS 45.9 66.9 88.5 99.1 70.3 87.5 96.2 65.8 71.8 78.2 84.3 84.5
ORPS (w/ T) 67.1 81.4 93.7 89.4 91.4 95.7 98.1 63.6 90.4 93.1 95.6 59.1

DeepSeek-Coder-7B-Instruct-v1.5 (2024)
CoT 32.7 45.9 67.3 160.1 65.9 78.2 85.4 86.9 69.3 75.0 80.9 77.7
Reflexion 25.9 41.9 63.0 153.0 63.4 77.1 86.6 101.0 68.9 74.4 80.2 74.2
LDB (w/ T) 31.5 45.7 61.7 206.2 74.4 80.0 81.7 85.6 61.1 64.0 66.1 98.3
BoN 49.4 63.9 80.2 123.4 73.8 88.1 94.5 64.1 74.3 80.2 86.8 68.9
ORPS 56.3 71.1 88.0 89.4 76.2 90.0 96.3 40.6 73.2 80.3 87.5 46.8
ORPS (w/ T) 63.7 80.8 96.9 74.4 95.7 98.0 99.4 31.8 93.0 94.7 96.1 34.2

Qwen-2.5-Coder-7B-Instruct (2024)
CoT 40.1 55.3 72.2 118.6 72.6 79.0 82.3 79.2 79.0 83.3 88.3 67.3
Reflexion 37.7 57.1 78.4 111.2 75.6 81.1 84.1 73.6 79.0 84.0 88.7 63.5
LDB (w/ T) 35.8 49.9 65.4 187.8 87.8 90.3 91.5 76.1 66.9 69.4 72.0 96.8
BoN 53.1 68.8 85.8 117.9 77.4 85.1 87.8 66.8 82.9 87.2 91.8 62.6
ORPS 59.9 75.7 92.0 84.1 79.9 91.6 96.3 48.3 76.7 82.4 88.3 68.0
ORPS (w/ T) 77.8 87.9 96.9 82.4 96.3 98.0 98.8 43.9 94.9 96.4 97.3 45.3

Qwen-2.5-Coder-14B-Instruct (2024)
CoT 53.7 63.9 77.2 119.2 82.9 88.5 90.2 76.6 84.0 87.4 91.1 67.5
Reflexion 60.5 70.5 82.1 113.3 83.5 89.9 92.7 68.8 83.3 87.2 91.1 66.0
LDB (w/ T) 51.9 62.9 75.3 225.2 89.6 92.0 92.7 140.5 72.4 74.6 76.3 149.7
BoN 61.7 74.9 90.7 115.6 87.8 93.9 95.7 58.8 81.7 86.4 91.1 58.4
ORPS 61.7 77.4 90.7 84.8 81.7 91.3 96.3 41.5 76.3 82.0 87.9 58.8
ORPS (w/ T) 85.8 90.7 95.7 64.2 97.0 98.5 99.4 43.8 95.3 96.9 98.1 41.0

GPT-4o-Mini (2024)
CoT 50.0 65.9 80.2 124.5 79.9 87.5 90.9 80.5 78.6 83.5 87.9 70.3
Reflexion 62.3 73.9 87.7 93.2 75.0 83.6 87.2 75.1 79.4 84.0 88.3 67.6
LDB (w/ T) 54.9 67.8 82.7 220.1 88.4 92.2 93.9 133.4 72.8 75.5 77.8 157.9
BoN 64.2 78.6 93.8 88.9 82.9 90.2 92.7 66.5 80.5 85.5 89.9 64.6
ORPS 67.9 81.2 94.4 81.5 84.8 92.7 96.3 57.5 80.2 86.0 91.8 64.7
ORPS (w/ T) 88.9 94.3 98.1 61.6 97.6 98.7 99.4 46.2 95.7 97.3 98.4 51.4

reward based methods like Reflexion and LDB, our ap-
proach consistently demonstrates superior performance re-
gardless of test case access. This improvement stems from
a fundamental difference in approach: while these outcome-
based methods focus primarily on local information like
resolving execution errors and reasoning in chain struc-
ture, our method provides LLMs with broader reasoning
space to reflect on higher-level aspects such as algorithm
selection and problem properties by using process reward
guided search. For instance, LDB achieves 35.8% Pass@1
on LBPP with Qwen-7B with test case access, while our
method reaches 77.8% under the same conditions.

Particularly noteworthy is the performance boost when mod-
els have access to gold unit tests from test datasets (with-
out access to solutions). All models show drastic improve-
ments on all metrics in this setting. For instance, Qwen-7B

achieves 77.8% Pass@1 on LBPP and 96.3% on HumanEval
with test case access, compared to 59.9% and 79.9% with-
out. This suggests that while our self-generated test cases
may be relatively weak, given feedback for higher quality
test cases, models can effectively guide themselves through
the reasoning process to generate significantly better code.

Figure 3 further supports these findings through detailed
profiling results, showing consistent improvements over
baselines across all models in terms of code efficiency and
quality metrics. Guided by our framework, models are capa-
ble of refining themselves to generate faster, more coherent
code. However, we do observe a slight disadvantage on
MBPP, particularly when comparing with Best-of-N sam-
pling. This is less concerning given that, as shown in Table 1,
MBPP consists of relatively simple problems with short so-
lutions, and a significant portion (20.8%) of its test data
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Figure 3: Multi-dimensional Performance Analysis. Met-
rics are normalized against the LBPP standard solutions
(1.0×) and averaged across all backbone models. Higher
values indicate better performance.

Table 3: Ablation Study Results. - Execution: Remove
execution from our framework. - Reasoning: Remove rea-
soning process. Every metric is in percentage.

Method Pass@1↑ Tests↑ Valid↑ Time↓
ORPS 59.9 75.7 92.0 84.1

- Execution 43.8 56.4 72.8 200.5
- Reasoning 55.6 74.5 94.4 124.5

already exists in publicly available pre-training datasets.

4.3. Ablation Study

We conducted experiments on the challenging LBPP dataset
using the Qwen-7B model to investigate the importance of
two key components in the exploration process:

1. Execution Outcomes. Studies whether the model can ac-
cess execution results to guide solution refinement. With-
out execution feedback, the model must rely solely on
internal reasoning to assess correctness.

2. Reasoning. Investigates whether the model should ex-
plicitly perform reasoning before generating new code
at each step. Without reasoning, the model directly gen-
erates new code based only on past code and execution
results.

The results are presented in Table 3. When the model
is unable to access execution outcomes during searching,
Pass@1 decreases by 16.1%. This highlights the critical
role of environment feedback in guiding the model to gen-

Table 4: Analysis of Process Reward Model. Granularity
refers to the level of detail in the reward signal (line-level or
outcome-level). Train indicates whether the process reward
model requires training.

Methods Pass@1↑ Tests↑ Valid↑ Time↓Granularity Train

Outcome ✓ 37.0 48.3 65.4 153.8
Line ✓ 32.1 43.9 59.3 153.4

Outcome ✗ 59.9 75.7 92.6 89.1
Line ✗ 38.3 52.8 70.4 123.7

erate correct solutions. Since LLMs struggle to accurately
predict execution outcomes for a given piece of code (Jain
et al., 2024), incorporating execution results ensures that the
model benefits from concrete feedback.

Omitting reasoning during searching results in a 4.3% de-
crease in Pass@1. Reasoning enables the model to itera-
tively refine its approach based on feedback, addressing
issues that may not be resolved through execution feedback.

4.4. Analysis of Process Reward Model

Our framework employs an implicit process reward model
(PRM), which provides supervision signals during beam
search without requiring additional training. To the best of
our knowledge, no existing process supervision methods
have been specifically designed for code generation. Most
prior work on process supervision in mathematical reason-
ing (Luo et al., 2024) generates line-level reward signals
and relies on explicitly trained PRMs. This motivates us to
investigate two key questions: (1) Would adopting line-level
rewards, similar to those used in mathematical reasoning
tasks, improve performance? (2) Is an implicit PRM that
does not require training better than an explicitly trained
PRM?

To address these questions, we conduct experiments on the
LBPP dataset using the Qwen-7B model. Similar to line-
level rewards, we define the granularity of ORPS reward
signals as outcome-level. For the line-level method, the
model generates step-by-step thoughts for the coding prob-
lem, with numerical process rewards assigned to each step.
The final code is then generated based on the best thought
trace. For methods requiring explicit training, we randomly
select half of the LBPP dataset as a training set to avoid data
leakage. To simulate human-annotated process feedback,
we filter data from GPT-4’s outputs.

Results in Table 4 confirm that our framework substantially
outperforms the other three method, validating our design
choices. Overall, outcome-level reward signals prove to be
more effective than line-level signals. Intuitively, line-level
signals can only provide feedback for incomplete thought
processes, which undoubtedly lack more information com-
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Figure 4: Performance vs. Inference Budget. The y-axis
represents Pass@1 scores on LBPP. The x-axis represents
the number of candidates generated during inference.

pared to the outcome-level.

Additionally, the implicit PRM shows greater effectiveness
than the explicit PRM. This suggests that external process
supervision feedback may not always be reliable. We con-
sider that LLMs already have strong self-reflection capabil-
ities and only require execution outcomes to activate this
ability. This also indicates that spending extra data and time
on training reward models might be unnecessary.

4.5. Scaling Analysis

In addition, we wanted to explore how the performance
of ORPS changes as inference overhead increases. For
comparison, we chose BoN as the baseline. This is because
BoN allows easy control of inference overhead with linear
growth. We conducted experiments on two models using
the most challenging LBPP dataset. The results are shown
in Figure 4. With the same model, ORPS improved much
faster as inference overhead increased. This shows that
ORPS has strong scaling potential. It can effectively use
more computational resources to improve reasoning. In
comparison, BoN showed slower improvements, suggesting
it does not fully utilize the increased inference capacity.

4.6. Case Studies

We also analyzed the improvements of ORPS across dif-
ferent problem categories. As shown in Figure 5, on the
competitive programming dataset LBPP, our method shows
significant improvements over the CoT Baseline, especially
in more difficult categories. For instance, in complex al-
gorithmic tasks such as dynamic programming, loops, and
graphs, our method correctly solves nearly twice as many
problems as CoT. This further confirms that high-quality
intrinsic reasoning can help models avoid logical pitfalls
when tackling difficult coding tasks.
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Figure 5: Performance by Problem Class. Top-20 problem
classes in LBPP showing success rates and unsolved cases
for ORPS vs baseline.

Through detailed case studies, we demonstrate how our
framework enhances code generation by improving reason-
ing. As shown in Appendix C, the response generated by
the traditional CoT method for the Minimum Greatest Com-
mon Divisor problem in LBPP demonstrates that while the
model provides a detailed thought process during solution
generation, the complexity of the task results in an imper-
fect code implementation. For instance, in CoT’s approach,
the reliance on nested loops and pairwise GCD calculations
introduces inefficiencies and fails to address scalability for
larger datasets. Similarly, our method’s initial implemen-
tation demonstrates a lack of robustness in handling edge
cases and unnecessary redundancies in subset formation.

However, ORPS achieves a more accurate solution through
finer reasoning. The code initially generated by our model
contains redundancies and erroneous logic. Nevertheless,
with the feedback from the critic on the execution outcomes,
the programmer successfully refines the code to reach a
correct implementation. This iterative process not only elim-
inates logical errors but also optimizes performance, demon-
strating the advantage of integrating structured feedback
into code generation.

5. Conclusion
We introduce Outcome-Refining Process Supervision
(ORPS), as a unified framework to bridge the gap between
process supervision and outcome supervision through struc-
tured reasoning and execution-driven feedback. Our results
reveal that structured reasoning concrete feedback signals
are pivotal for solving complex programming tasks. ORPS
proved effective even with smaller models, underscoring
the importance of test-time scaling of reasoning over mere
parameter scaling. Furthermore, our framework’s utiliza-
tion of execution feedback eliminates the need for a trained
PRM, making it a cost-efficient alternative.

8



Reasoning Through Execution: Unifying Process and Outcome Rewards for Code Generation

These contributions highlight the potential of process su-
pervision to enhance problem-solving abilities in LLMs.
Future work could extend this framework to other domains
requiring rigorous reasoning and verification. By bridging
the gap between reasoning quality and execution fidelity,
ORPS paves the way for more effective self-evolving LLMs.

Impact Statement
This work advances code generation capabilities in large lan-
guage models through more efficient reasoning processes.
While our primary focus is methodological—improving
algorithmic problem-solving without costly reward mod-
els—we acknowledge broader implications common to
code generation systems. Enhanced programming assistants
could democratize software development but may also lower
barriers for generating malicious code. The framework’s
emphasis on code efficiency could reduce computational
overhead in generated programs, though its environmental
impact depends on deployment contexts.

These considerations reflect well-established societal trade-
offs in AI-powered code tools rather than novel risks intro-
duced by our approach. We encourage responsible deploy-
ment with standard safeguards against misuse, consistent
with ethical practices for generative AI systems.
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Table 5: Performance Metrics Description. Our evaluation framework uses both dynamic execution profiling and static
code analysis metrics to comprehensively assess code quality and efficiency.

Category Metric Description

Dynamic Execution Profiling

Time Enabled Total CPU time spent executing the code, measured in nanoseconds. Lower
values indicate more efficient execution and better algorithmic optimization.

Instruction Count Number of CPU instructions executed during runtime. Reflects computa-
tional efficiency, with lower counts suggesting more optimized code paths
and better algorithm implementation.

Branch Misses Frequency of incorrect branch predictions during execution. Lower values
indicate better code predictability and CPU pipeline efficiency, resulting in
faster execution times.

Page Faults Number of times the program needs to access virtual memory. Fewer page
faults suggest better memory management and more efficient memory access
patterns.

Static Analysis

Code Length Total number of lines in the source code. Generally, shorter code length
indicates more concise solutions while maintaining readability and function-
ality.

AST Node Count Number of nodes in the Abstract Syntax Tree. Measures structural complex-
ity of the code, with fewer nodes suggesting simpler and more maintainable
implementation.

Cyclomatic Complexity Quantifies the number of linearly independent paths through the code. Lower
values indicate easier-to-maintain and test code, reducing potential bug
sources.

Cognitive Complexity Measures how difficult the code is to understand, based on control flow
structures and nesting. Lower scores suggest more readable and maintain-
able code that is easier to debug.

A. Experimental Setup and Hyperparameter Details
This appendix provides a comprehensive description of the experimental setup, encompassing the hyperparameters, software,
and hardware configurations employed in this study.

A.1. Search Algorithm Hyperparameters (ORPS)

The following hyperparameters were used for the search algorithm in ORPS:

• Search Depth (num rounds): 5. This parameter defines the maximum depth of the search tree, representing the
number of iterative steps in the search process.

• Beam Width (top k): 3. This parameter specifies the number of highest-scoring candidate solutions (traces) retained
at each step of the beam search.

• Expansion Factor (num samples): 20. This represents the number of new states (candidate solutions) explored
from each state during the search process.

• Process Reward Weight (α): 0.5. This metric determines the proportion of the Process Reward in the step reward.

• Outcome Reward Weight (β): 0.5. This metric determines the proportion of the Outcome Reward in the step reward.

A.2. Inference Configuration

All inference experiments were conducted on a single machine using the FreeEval (Yu et al., 2024b) codebase, integrated
with Hugging Face’s text-generation-inference toolkit for efficient model serving. The following inference
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settings were applied:

• Maximum Context Length (max tokens): 18,000 tokens. This parameter defines the maximum number of tokens
allowed in the input sequence to the model.

• Generated Tokens per Round: 1,500 tokens. This specifies the number of new tokens generated by the model in each
round of inference.

A.3. Execution Constraints

To ensure consistent and reproducible results, the following execution constraints were enforced during inference:

• Timeout per Test Case: 5 seconds. This limits the maximum execution time allowed for each test case.

• Memory Limit: 512 MB. This constraint restricts the maximum memory allocation permitted for each test case.

• Maximum Test Cases per Problem: 15. This sets an upper bound on the number of test cases evaluated for each
problem.

A.4. Model Training Configuration

This section outlines the hyperparameters and settings used during the training phase of the model, which was pertinent
to the analysis experiments (subsection 4.4). While ORPS itself does not require training, these details are provided for
completeness and reproducibility.

• Training Framework: llamafactory (Zheng et al., 2024)

• Optimization Framework: DeepSpeed ZeRO3 (Rajbhandari et al., 2020) (Zero Redundancy Optimizer Stage 3). This
enables efficient training of large models by partitioning optimizer states, gradients, and model parameters across data
parallel processes.

• Base Model: qwen-2.5-coder-7b-instruct. This is the pre-trained language model upon which further
training was conducted.

• Batch Size per Device: 2. This defines the number of training examples processed on each GPU before a gradient
update step.

• Gradient Accumulation Steps: 4. This allows simulating a larger effective batch size by accumulating gradients over
multiple forward and backward passes before updating model weights. The effective batch size is therefore 8 (2 per
device * 4 steps).

• Learning Rate: 2× 10−5. This parameter controls the step size taken during gradient-based optimization.

• Learning Rate Scheduler: Cosine decay. This gradually reduces the learning rate over the course of training, following
a cosine function.

• Number of Training Epochs: 2.0. This specifies the number of complete passes through the entire training dataset.

• Maximum Sequence Length: 16,384 tokens. This defines the maximum length of the input sequences during training.

• Mixed Precision Training: Enabled with bf16 (Brain Floating Point 16-bit format). This accelerates training by
performing some computations with reduced precision while maintaining model accuracy.

A.5. Hardware Environment

All experiments were performed on NVIDIA A800 GPUs, each equipped with 80GB of GPU memory.
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CoT Output

Prob: Given an array of integers, split it into the minimum number of subsets such that the GCD of each subset is
greater than 1.
Reasoning Process:
1. First, we need to understand what makes numbers group-able: - Numbers can be in the same subset if their GCD
¿ 1 - We want to minimize the number of subsets
2. Key observations: - If GCD(a,b) ¿ 1 and GCD(b,c) ¿ 1, a,b,c can potentially be in the same group - This suggests
a graph-like structure where numbers are connected if their GCD ¿ 1
3. Solution approach: - Treat numbers as nodes in a graph - Connect numbers with edges if their GCD ¿ 1 - Find
connected components in this graph - Each component represents one subset
4. Implementation strategy: - Use Union-Find data structure for efficient component tracking - Calculate GCD using
Euclidean algorithm - Final answer is the number of connected components
Generated Solution:

1 def gcd(a, b):
2 while b:
3 a, b = b, a % b
4 return a
5

6 def minGroups(nums):
7 n = len(nums)
8 parent = list(range(n))
9

10 def find(x):
11 if parent[x] != x:
12 parent[x] = find(parent[x])
13 return parent[x]
14

15 def union(x, y):
16 parent[find(x)] = find(y)
17

18 for i in range(n):
19 for j in range(i + 1, n):
20 if gcd(nums[i], nums[j]) > 1:
21 union(i, j)
22

23 return len(set(find(i) for i in range(n)))

B. AI Usage in Code Development
During the development of ORPS and the design of its experiments, LLMs were employed to assist with coding. All
AI-assisted code were reviewed and refined by the authors to ensure correctness and alignment with the research goals.

C. Example Model Outputs
To illustrate the effectiveness of our approach, we present a representative example from the LBPP dataset (Problem #101)
that demonstrates how our method handles complex logical reasoning tasks. The original prompt of this problem is:

You are given an array of integers, each of which is greater than 1. This array needs to be split into subsets such that
the greatest common divisor within each subset is greater than 1. Write a Python program to return the minimum
number of subsets required to create such a split.
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ORPS Programmer Output

# === Programmer Thoughts === # The problem requires splitting an array into subsets such that the greatest
common divisor (GCD) within each subset is greater than 1. To achieve this, we can use a greedy algorithm. The
idea is to iterate through the array and add each element to the existing subset if their GCD is greater than 1. If the
GCD is 1, we start a new subset.
# We need to implement a function that calculates the GCD of two numbers. Then, we can use this function to
determine if an element can be added to an existing subset or if we need to start a new subset.
# We also need to ensure that our solution is efficient. The time complexity of the GCD calculation can be optimized
using the Euclidean algorithm, which has a time complexity of O(log(min(a, b))).
# === Solution ===

1 import math
2

3 def gcd(a, b):
4 """
5 Calculate the greatest common divisor of two numbers using the Euclidean algorithm.
6 """
7 while b:
8 a, b = b, a % b
9 return a

10

11 def min_g_c_d_subsets(nums):
12 """
13 Split the array into subsets such that the greatest common divisor within
14 each subset is greater than 1. Return the minimum number of subsets required.
15 """
16 subsets = []
17 for num in nums:
18 added = False
19 for subset in subsets:
20 if gcd(num, subset[-1]) > 1:
21 subset.append(num)
22 added = True
23 break
24 if not added:
25 subsets.append([num])
26 return len(subsets)

ORPS Critic Feedback

# === Critic Thoughts === The code provided attempts to solve the problem by iterating through each number and
adding it to an existing subset if the GCD with the last element of the subset is greater than 1. If no such subset
exists, a new subset is created. This approach ensures that each subset has a GCD greater than 1. However, there are
a few issues and improvements that can be made:
1. **Test Case Failures**: The test cases for indices 5, 8, and 10 fail. This indicates that the current implementation
does not correctly handle certain scenarios where numbers with no common divisor greater than 1 are present.
2. **Performance**: The code has a higher cognitive complexity, which means it is harder to understand and
maintain. The use of nested loops and the nested if-else structure can be optimized.
3. **Efficiency**: The current approach has a time complexity of O(n2) due to the nested loops. This can be
optimized to O(n log n) by sorting the numbers first and then using a single pass to form subsets.
4. **Code Clarity**: The code can be made more readable by breaking down the logic into smaller functions and
adding comments.
5. **Handling Edge Cases**: The code does not handle edge cases such as an empty list or a list with a single
element.
# === Score === $$3$$
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ORPS Programmer Improvement

# === Programmer Thoughts === # The feedback indicates that the current implementation has several issues,
including failing test cases and high cognitive complexity. We need to address these issues by improving the logic
and ensuring that all edge cases are handled correctly.
# **Key Improvements**: 1. **Handling Edge Cases**: Ensure that the function handles an empty list or a list
with a single element. 2. **Efficiency**: Optimize the approach to achieve a time complexity of O(n log n) by
sorting the numbers first and then using a single pass to form subsets. 3. **Code Clarity**: Break down the logic
into smaller functions and add comments for better readability.
# **Approach**: 1. **Sort the Array**: Sorting the array ensures that numbers with a common divisor are adjacent,
making it easier to form subsets. 2. **Single Pass to Form Subsets**: Iterate through the sorted array and add each
number to the current subset if the GCD with the last element of the subset is greater than 1. If not, start a new
subset. 3. **Edge Case Handling**: If the list is empty, return 0. If the list has a single element, return 1.
# === Solution ===

1 import math
2

3 def gcd(a, b):
4 """Calculate the greatest common divisor of two numbers
5 using the Euclidean algorithm."""
6 while b:
7 a, b = b, a % b
8 return a
9

10 def min_g_c_d_subsets(nums):
11 """
12 Split the array into subsets such that the greatest common divisor
13 within each subset is greater than 1.
14 Return the minimum number of subsets required.
15

16 :param nums: List of integers greater than 1
17 :return: Minimum number of subsets required
18 """
19 if not nums:
20 return 0
21 if len(nums) == 1:
22 return 1
23

24 # Sort the array to ensure numbers with a common divisor are adjacent
25 nums.sort()
26

27 subsets = []
28 for num in nums:
29 added = False
30 for subset in subsets:
31 if gcd(num, subset[-1]) > 1:
32 subset.append(num)
33 added = True
34 break
35 if not added:
36 subsets.append([num])
37

38 return len(subsets)
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D. Impact of Optimizing Different Metrics on Code Quality
In ORPS, we integrate multiple evaluation metrics to guide the model’s reasoning and code generation. These metrics
include both static analysis (e.g., AST nodes, cyclomatic complexity) and dynamic execution profiling (e.g., execution
speed, CPU instruction count, branch mispredictions). To better understand their individual contributions, we conduct an
ablation study where each metric is optimized in isolation.

D.1. Experimental Setup

To isolate the effect of each metric, we conduct a series of ablation experiments. In each experiment, the model receives
rewards only from a single metric, while all other evaluation criteria remain unchanged. Specifically, we consider the
following setups:

• +AST Nodes: Encourages structurally simpler code by minimizing the number of AST nodes.

• +Cyclomatic Complexity: Penalizes excessive branching and loop structures to improve maintainability.

• +Cognitive Complexity: Rewards code that is easier to understand based on nested structures and control flow.

• +Execution Speed: Optimizes for faster execution while maintaining correctness.

• +CPU Instructions: Minimizes the number of CPU instructions executed.

• +Branch Mispredictions: Encourages predictability to improve processor efficiency.

• +Page Faults: Reduces memory access overhead for better performance.

• +All Metrics: Incorporates all the above metrics into a single optimization objective.

D.2. Results and Discussion

As shown in Figure 6, optimizing for a single metric significantly improves performance in that specific aspect, yet comes at
a severe cost to other dimensions of code quality. This phenomenon suggests that the model falls into a form of local metric
optimality, where it overfits to the given reward signal while neglecting other critical properties of high-quality code.

More specifically, we observe that optimizing for static analysis metrics (e.g., AST nodes, cyclomatic complexity) often
leads to a sharp decline in dynamic execution metrics (e.g., execution speed, CPU instructions). For instance, minimizing
cyclomatic complexity encourages structurally simpler code, yet it may suppress more efficient algorithmic choices that
involve loops and conditionals. Conversely, optimizing for execution speed often results in obfuscated or redundant code, as
the model prioritizes raw performance over maintainability.

These observations highlight an inherent challenge in code optimization: static structure and dynamic efficiency often
conflict when optimized in isolation. This suggests that achieving well-balanced code quality requires a multi-objective
optimization strategy rather than single-metric reinforcement. Traditional reward models struggle in such scenarios, as they
often assume reward signals are aligned across different dimensions. However, our results indicate that code generation
requires more nuanced supervision—one that dynamically balances trade-offs between readability, maintainability, and
execution efficiency.

Furthermore, the steep performance drop in non-optimized metrics suggests that reward sparsity is a critical issue in
single-metric training. Since the model receives no information about other quality dimensions, it fails to generalize
improvements beyond the specific reward it observes. This contrasts with human programming intuition, where engineers
naturally balance multiple objectives, such as runtime efficiency, readability, and modularity. Future work could explore
techniques like adaptive reward scaling, where the model dynamically adjusts its focus based on real-time trade-offs rather
than rigid metric-specific optimization.
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Figure 6: Impact of single-metric optimization on code quality. Each value represents the difference from the baseline.
Optimizing for a single metric significantly improves performance in that dimension but leads to severe degradation in
others.
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Figure 7: Impact of reasoning quality on code quality. Each metric is normalized, where higher values indicate better
performance. The red bars represent the code quality when generated from higher-quality reasoning, while the blue bars
correspond to lower-quality reasoning. The results suggest that better reasoning significantly improves execution-related
metrics while having a limited effect on structural complexity.

E. Relationship Between Reasoning Quality and Code Quality
Our method is based on a core hypothesis: higher-quality reasoning leads to higher-quality code. To validate this
assumption, we conducted a simple motivation experiment.

E.1. Experimental Setup

We first prompted GPT-4o to generate two different reasoning chains for each problem in the LBPP dataset, explicitly
ensuring a clear quality difference between them. To verify that the generated reasoning indeed exhibited significant quality
differences, we used GPT-4o again to reassess and confirm their relative quality.

Next, we concatenated each reasoning chain with the original problem description and fed them separately into GPT-4o to
generate code solutions. Finally, we evaluated the quality of the generated code across multiple metrics.

E.2. Results and Analysis

As shown in Figure 7, all metrics are normalized, where higher values indicate better performance. The red bars represent
the quality of code generated from higher-quality reasoning, while the blue bars correspond to the lower-quality reasoning.

From the results, we observe that better reasoning generally leads to better overall code quality, particularly in dynamic
execution metrics. This suggests that high-quality reasoning not only improves correctness but also enhances execution
efficiency, possibly by guiding the model to generate more optimal algorithmic structures.

Interestingly, the complexity of the generated code does not increase significantly. One possible explanation is that more
detailed and higher-quality reasoning naturally guides the model toward generating more sophisticated solutions
that handle a wider range of scenarios, rather than simply making the code structurally more complex.

These findings reinforce the importance of reasoning supervision in code generation. A strong reasoning framework helps
models not only arrive at correct solutions but also optimize execution efficiency without unnecessarily inflating complexity.
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